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The Cassini spacecraft has imaged a number of interesting
features in Saturn’s rings, some of which can be interpreted as
disturbances due to small unseen moonlets that might also in-
habit the rings (see Porco et al. 2005; henceforth P05). Of par-
ticular interest here is the Encke gap, which is the narrow gap
in Saturn’s main A ring maintained by the small satellite Pan.
P05 identify four ringlets also residing in the Encke gap (Fig.
1). One ringlet is coincident with Pan’s orbit and is likely due
to particles in horseshoe orbits. However the other ringlets are
puzzling, since Pan’s perturbations tends to shepherd particles
away. P05 suggest these ringlets could indicate the presence
of other small moonlets, since such moonlets might be able
to counterbalance Pan’s perturbations and confine particles in
rings. The following will assess this possibility, and will also
estimate the masses and orbits of these hypothetical moonlets.

Pan has mass µp = 8.7 × 10−12 in Saturn masses, semi-
major axis ap = 133, 584 km, and orbits near the center of the
Encke Gap whose edges lie ∆pe = 160 km to either side of
Pan’s orbit (P05). Pan also interacts with the A ring at its many
Lindblad resonances (LRs) in the ring. Resonant interactions
cause Pan to exert a negative torque on the ring material at
its inner LRs (ILRs), and a positive torque at its outer LRs
(OLRs). These Lindblad torques maintain the gap, despite the
ring’s viscosity which tries to close it. However if a small
moonlet also inhabited the gap, these same Lindblad torques
exerted by the ring would tend to drive the moonlet towards
the gap center. But a stable orbital configuration is possible if
this moonlet instead gets trapped at one of Pan’s LRs.

To consider this, assume the ring exerts an acceleration
on the moonlet of the form ar = 2βṙr̂ + (Tr/r)θ̂, where r
and ṙ are the moonlet’s radial position and velocity, and β, Tr

are constants. Gauss’ planetary equations shows this alters the
moonlet’s eccentricity at the rate ė ' βe, and drives it radially
at the rate ṙ = 2Tr/rΩ, where Ω is the moonlet’s angular ve-
locity. Newton’s second law of motion then provides the evolu-
tion of the moonlet’s position vector: r̈ = −∇(φS +φp)+ar,
where φS and φp are Saturn’s and Pan’s gravitational poten-
tials. Note that a similar problem is also considered in Hahn
et al. (1995), which examined the delivery of planetesimals
to a protoplanet’s Lindblad resonance via solar nebula drag.
Aerodynamic drag has a form similar to that considered above,
so that problem’s solution may also be applied here.

Begin by assuming that the moonlet’s radial and tan-
gential coordinates vary as r(t) = r0 + r1(t) and θ(t) =
θ0 + Ω0t+ θ1(t), where r0 and θ0 + Ω0t is the moonlet’s un-
perturbed motion, and r1, θ1 are small disturbances satisfying
the linearized equation of motion:
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where Ω2(r) = r−1∂φs/∂r and Ω0 ≡ Ω(r0) is the moon-

Figure 1: Cassini ISS image N1467351325 2 from the Plan-
etary Rings Node. Upper image shows the Encke gap (black)
and nearby ring material with brightness 0.07 < I/F < 0.1.
Lower image is of fainter material having 0.002 < I/F <
0.007, revealing four ringlets in the gap. Leftmost is the
“Encke I” ringlet of P05, a distance ∆I = 65 km from the gap
edge. The central ringlet is at Pan’s orbit, the fainter “Encke
O1” ringlet lies ∆O1 = 83 km from the gap’s far side, and the
narrow “Encke O2” ringlet is ∆O2 = 20 km from the edge.

let’s angular velocity. We can treat’s Pan’s orbit as circular,
so a Fourier expansion of its potential has the form φp =
Re

P

Φm(r)ei(mθ−ωmt) where the sum ranges over all in-
tegral values of m, the Φm(r) are real functions of r, and
the disturbing frequency ωm = mΩp is the mth harmonic of
Pan’s angular velocity Ωp; see Goldreich & Tremaine (1982,
henceforth GT82) for details.

There are two types of driving forces on the right hand side
of Eqn. (1): oscillatory terms due to Pan’s periodic perturba-
tions, and the secular acceleration exerted by the ring. The
solution to the above equation thus has three parts:
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where re and θe are the moonlet’s epicylic motions that satisfy
the homogeneous form of Eqn. (1), rr and θr are the secular
rates at which the ring causes the moonlet’s orbit to drift, and
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are the complex amplitude’s of the moonlet’s response to Pan’s
mth perturbation. In the above, ω′

m = m(Ω − Ωp) is the
Doppler–shifted forcing frequency, ψm = −r∂Φm/∂r −
2mΩΦm/ω

′

m is Pan’s forcing function, D(r) = κ2 − ω′2
m

is the moonlet’s distance from the mth Lindblad resonance,
and all quantities are evaluated at r = r0. Note that when
the ring perturbation is absent, the above solution reduces to
that given in GT82. We also make the usual assumption that
the moonlet is dominated by perturbations from a single mth

resonance, so r1 ' Re(Rme
iω′

m
t) and θ1 ' Re(Θme

iω′

m
t).

However this assumption is dicey in much of the Encke gap
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Figure 2: Moonlet mass µ (in units of Pan’s, left axis) and
diameter D (right axis) versus distance from the gap edge,
assuming the nearby ring has σ ∼ 50 gm/cm2 and µd =
πσr2/MS ∼ 5 × 10−8. The dot is the distance of the O2
ringlet from the gap edge. Note the curve is unreliable right of
the dot, since the calculation does not account for the torque
that a large, nearly Pan–sized moonlet exerts on Pan.

since orbits within ∆c ' 1.3µ
2/7
p ap ' 120 km of Pan’s are

chaotic due to overlapping resonances (Wisdom 1980).
The specific torque Pan exerts on the moonlet is T ′

p =
−|r×∇φp| = −∂φp/∂θ = mΦm(r) sin(mθ − ωmt). In-
serting r(t) and θ(t) into T ′

p, Taylor expanding to first or-
der, and time averaging yields T ′

p ' mψmIm(Rm)/2r =
mβω′

m(ψm/r)
2/[D2 +(2βω′

m)2]; see Hahn et al. (1995) for
details. The Lindblad resonance is where D(rm) = 0, so
ω′

m(rm) = sκ(rm) where s = +1 (−1) at an ILR (OLR);
this lies a distance ∆m = rm − ap ' −2sr/3m away from
the moonlet. The forcing function is ψm ' sfmµp(rΩ)2

where f ' 1.6 when evaluated at the mth resonance (GT82),
so the maximum torque Pan exerts on the moonlet as it drifts
into the mth resonance is
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where µ is the moonlet’s mass in units of Saturn’s mass MS .
Since the ring torque is driving the moonlet towards Pan, Tp

must be positive (negative) at an OLR (ILR) if the moonlet is
to get trapped via a balance of torques. This in turn requires
β < 0, i.e., the moonlet’s eccentricity must also be damped.

To evaluate β we need the rate at which the moonlet’s
eccentricity e evolves. GT82 show that a narrow ring of mass
δm = 2πσrδr, mass surface density σ, and radial width δr
orbiting a distance ∆ away will damp the moonlet’s eccen-
tricity at the rate δė = −(g/2)µ(δm/MS)|r/∆|5Ωe, where
g = 0.148, and ∆ is the ring–moonlet separation. Provided
motions at the corotation resonances are not saturated, the
moonlet’s total e–damping rate due a broad ring is
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where µd = πσr2/MS is the normalized disk mass, and

|r − redge| is the moonlet’s distance from the nearest gap edge.
Since de/dt = βe, β is the coefficient multiplying e in Eqn.
(5). Inserting β into (4) yields the torque Pan exerts on the
moonlet:
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which is repulsive—this torque drives the moonlet away from
Pan.

However the ring also exerts a torque that drives the
moonlet towards Pan. The ring’s radial torque density is
T (r) = sgn(r0 − r)(8πf2/81)µ2µd|r0/(r0 − r)|4MSr0Ω

2
0

(GT82), so the total torque integrated across the nearby ring is
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The moonlet is trapped at Pan’s mth LR when these torques
sum to zero, which results in a relationship between the moon-
let’s mass µ and its position in the gap:
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which is plotted in Fig. 2. This figure indicates that resonant
effects tends to sort ring particles near a gap edge according to
size, with larger particles being driven further away from the
edge. Large ring particles are in fact attracted to gaps. We
also wonder whether this size–sorting might play a role in the
development of the ropy features that P05 spot at the edges of
the Encke gap. Lastly, we note that this phenomena might also
play a role during the early stages of planet formation, when
protoplanets begin to carve open gaps in the planetesimal disk.

Unfortunately, it is unlikely that the shepherding mecha-
nism envisioned here can account for all three Encke ringlets I,
O1, and O2. For instance, if one assumes the O2 ringlet is con-
fined by torques from Pan and a moonlet, then the net torque on
the ringlet, −T ∝ [µ2/∆4

mr −µ2
p/∆

4
pr], must be zero, so the

moonlet–Pan mass ratio obeys µ/µp = (∆mr/∆pr)
2 where

∆mr and ∆pr are the moonlet–ringlet and Pan–ringlet separa-
tions. Combining this result with Eqn. (8) then yields a unique
mass and orbit for the shepherd satellite: µ ' 0.0061µp orbit-
ing a distance ∆me ' 9.2 km inwards of the gap’s edge. Such
a body would have a diameter (µ/µp)1/3 ∼ 1/5th of Pan’s,
and its brightness would be 1/25th that of Pan’s, causing us
to wonder if this D ∼ 5 km–sized body would already have
been detected in Cassini images. Invoking this scenario for
the other ringlets is even more problematic, since this would
require moonlets with masses ∼ 20% to ∼ 50% of Pan’s.

If small unseen moonlets are in fact shepherding the Encke
ringlets, then they must also be susceptible to additional ec-
centricity damping that is more vigorous than that considered
here (i.e., the β in Eqn. 4 must be larger). Radiation forces
like the Yarkovsky effect come to mind, and this possibility is
being explored.
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