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It has been known for some time that the small icy satellites
of the giant planets are susceptible to disruption by cometary
impacts [1]. The disruption of a satellite will produce a very
narrow and dense debris ring that is likely to suffer gravitational
instabilities that is manifested as density wakes and/or waves.
Since vigorous angular momentum transport is also associated
with wakes and waves, it is likely that a newly–formed ring
would spread quite rapidly due to the density contrasts within
the ring. Indeed, our initial interest was to determine whether
the disruption of a Mimas–class satellite orbiting exterior to
Saturn’s Roche limit could deliver additional mass to Saturn’s
rings that largely orbit interior to the Roche limit. However
it is shown below that the short answer to this question is no.
A self–gravitating debris ring initially spreads quite rapidly
due to the formation of wakes, but the process soon stalls due
to the concurrent decrease in the ring’s surface density. Al-
though the disruption of a major satellite like Mimas is likely
to have occurred several times over the age of the solar system,
debris–ring spreading still proceeds too slowly to substantially
contribute to the mass–budget of Saturn’s rings. Nonetheless,
the frequency of satellite disruption and the subsequent evolu-
tion of the debris is of some interest, which we detail below.

The size of the smallest impactor that is able to disrupt a
target satellite is obtained via energy considerations. The most
likely impactor is an ecliptic comet that has diffused inwards
from the Kuiper Belt, and such bodies approach Saturn with a
typical velocity–at–infinityv∞ ∼ 3 km/sec [2]. The impactor
also acquires the additional velocity∆v =

√
2vt as it falls

down Saturn’s gravitational well, wherevt is the target satel-
lite’s orbital velocity about Saturn. Thus the impact velocity
will be aboutvi ∼

√
v2∞ + ∆v2 + v2

t ∼
√

3GMs/at where
G is the gravitation constant,Ms is the mass of Saturn, and
at is the target satellite’s semimajor axis. Disrupting a satel-
lite requires a kinetic energymiv

2
i /2 in excess offEb + Em

wheremi is the impactor mass,Eb = 3GM2
t /5Rt is the grav-

itational binding energy of the target satellite that has massMt

and radiusRt, the adjustment factorf ' 1 − aroche/2at

accounts for the fact that the resulting debris need only be
launched beyond the target’s Hill sphere witharoche being
Saturn’s Roche limit, andEm = 4πStR

3
t /3 is the mechanical

energy required to fragment a target of strengthSt. Disruption
thus requires an impactor of radius

Ri∼>γ[1 + (Rt/R?)
2]1/3Rt (1)

whereR? ≡
√

5St/4πfGρ2
t is the target radius that has

equal mechanical and gravitational energies, and the dimen-
sionless coefficientγ ≡ (2Stat/3GMsρi)

1/3 whereρi is the
impactor’s density. For example, disrupting a satellite such
as Mimas requires an impactor of radiusRi∼>5 km assuming
an impactor densityρi = 1 gm/cm3 and a target strength of
St = 107 dynes/cm2 that is typical of icy satellites [3].

The frequency of this impact event at Saturn can be scaled

from impact rates recently reported for the Galilean satellites
at Jupiter. For an order–of–magnitude estimate of the impact
raterx onto objectx, takerx ∼ NxPx whereNx is the num-
ber of impactors within striking distance of planet or satellite
x andPx is the impactors’ characteristic impact probability
per unit time. The ratio of impact rates at Jupiter (J) and
Saturn (S) isrJ/rS ∼ (NJ/NS)(PJ/PS) ' 2.4 according
to Table I of [2]. The impact probability per orbital period
is Px = (Rx/ax)2Gxfx whereRx is the target’s radius,ax

is its semimajor axis,Gx = 1 + (vesc,x/v∞)2 is the target’s
gravitational focusing factor that depends upon the target’s sur-
face escape velocityvesc,x, and the functionfx(ai/ax, ei, ii)
depends upon the impactor’s scaled semimajor axisai/ax, ec-
centricityei, and inclinationii [4]. Ecliptic comets approach
Jupiter at a typical velocity ofv∞ ∼ 4 km/sec [2] so Jupiter
has a focusing factorGJ ' 220 while Saturn hasGS ' 150.
If it is also assumed that each comet swarm in the vicinity
of Jupiter and Saturn have similar orbital distributions, then
the functionsfJ ∼ fS and the relative impact probabilities
arePJ/PS ∼ (GJ/GS)(RJ/aJ )2/(RS/aS)2 ∼ 7.4. Since
rJ/rS ' 2.4 ∼ (NJ/NS)(PJ/PS), this implies that the ra-
tio of ecliptic comets within striking distance of each planet
is NJ/NS ∼ 0.3; this is also the ratio of potential impactors
within reach of a Galilean satellite at Jupiter and our target
satellite at Saturn.

The orbits of the swarms of comets at Jupiter and Sat-
urn should also be distributed similarly since these impactors’
orbits are nearly parabolic with isotropic inclinations in a
planet–centered coordinate system. Thus the impactors at
the target satellite as well as at the Galilean satelliteg have
ft ∼ fg . The gravitational focusing factors of these small
satellites areGt ' Gg ' 1, so their relative impact prob-
abilities arePt/Pg ∼ (Rt/at)

2/(Rg/ag)
2 and the relative

impact rates arert/rg ∼ (NS/NJ )(Pt/Pg). Impacts at Io
will be used to calibrate impact rates in the Saturnian system,
sog = Io henceforth. The frequency of impacts at Io relative
to Jupiter isrIo/rJ = 1.4×10−4 [5] whererJ (di > 1 km) '
3.3 × 10−3 impacts/year is the rate of impacts at Jupiter by
ecliptic comets having diametersdi > 1 km [2], sorIo(di >
1 km) ' 5 × 10−7 impacts/year. Assuming impactors at
Jupiter and Saturn have the same cumulative power–law size
distributionN(di) ∝ d−Q

i , the impact rate at the target satel-
lite is rt ∼ (NS/NJ )(Rt/RIo)

2(aIo/at)
2(di/1 km)−Q×

rIo(di > 1 km). Combining this result with Eqn. (1) yields
the satellite’s disruption timescaleτ = r−1

t ,

τ ∼ NJ

NS

(
at

aIo

)2 (
RIo

1 km

)Q (
Rt

RIo

)Q−2

×
[
1 +

(
Rt

R?

)2
]Q/3

(2γ)Q

rIo(di > 1 km)
. (2)

If we adopt theQ = 2 size distribution that is in some agree-
ment with the Galilean crater record [5], then Eqn. (2) gives a
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Figure 1: The solid curves give the disruption timescaleτ
versus satellite massMt for the indicated values of satellite
strengthSt in dynes/cm2; these curves are evaluated at Mi-
mas’ distance from Saturn. The dots indicate various satellite
lifetimes assumingSt = 107 dynes/cm2.

disruption timescale ofτ ∼ 109 years for Mimas. The disrup-
tion timescale versus impactor mass is shown in Fig. 1 with
the solid curves demonstrating how these results depend on the
strengthSt that is known only to an order of magnitude [3].
Figure 1 also shows the disruption timescale for various Sat-
urnian satellites assumingSt = 107 dynes/cm2. But keep in
mind that Fig. 1 adopts a relatively shallowQ = 2 size distri-
bution. If impactors at Saturn instead have a steeperQ = 3.2,
as is observed among Kuiper Belt Objects [6], then disruption
timescales can be considerably longer.

Figure 1 suggests that a satellite like Mimas has been
disrupted∼ 4 times over the age of the solar system and
that the smaller satellites have been disrupted many times
over. Using Mimas as an example, its complete disruption
requires tossing debris beyond the satellite’s Hill radiusRh =
(Mt/3Ms)

1/3at. Since the most probable disruption scenario
is the minimum–energy event, this would result in a debris
ring of radial width∆ro ∼ 2Rh ∼ 1000 km for Mimas.
Azimuthal variations in the ring are smoothed out after a few
synodic periods or in a few years. This dense debris ring would
have an initial surface density ofσo = Mt/2πat∆ro ∼ 3000
gm/cm2 and a normal optical depth ofτ = 3σo/4ρtR ∼
20(R/1 m)−1 assuming the debris particles have a character-
istic radiusR. These particles will have initial eccentricities
of e0 ∼ Rh/at ∼ 0.003, so the debris will recollide at ve-
locitiesc0 ∼ e0vK ∼ 40 m/sec. Laboratory experiments and
impact scaling laws indicate that collisions at these velocities
will grind the ring particles down to sizes� 1 m [7], so the
ring’s high optical depth results in very frequent collisions that
steadily damps the particles’ random velocities. This velocity

damping continues until the ring approaches gravitationally
instability.

The threshold for gravitational instability is whenQT =
cΩ/πGσ = 1. Rings with QT > 1 are stable whereas
rings with QT < 1 can break up into concentric ringlets
having characteristic radial separationsλc = 4π2Gσ/Ω2

[8]. However a marginally stable ring with1∼<QT ∼<2 ex-
hibits transient clumps of particles known as wakes [9, 10].
The gravitational scattering of particles by these wakes coun-
terbalances collisional velocity damping and tends to keep
the ring near theQT = 1 threshold. Consequently, col-
lisions in the debris ring damps particle velocities down to
c1 ' πGσQT /Ω ∼ 8 cm/sec which corresponds to eccen-
tricities e1 ' c1/vK ∼ 6 × 10−6. Collisional damping
also flattens the ring until the particles have inclinations of
sin i ∼ e1/2. If the ring particles have a coefficient of resti-
tutionε, then the number of collisions needed to drive the ring
eccentricities frome0 → e1 is N ∼ ln(e1/e0)/ ln ε. Al-
thoughε for water ice is a sensitive function of particle size
and impact velocities [7, 11], it is likely smaller than 0.9 and
perhaps closer to 0.1. Forε < 0.9, N < 60 collisions. Since
each particle suffers∼ 2τ > 40 collisions per orbit, collisional
velocity damping proceeds very quickly indeed.

The azimuthal separation between wakes is about∼ 2λc

[9], so a narrow annulus in the debris ring should contain about
m ∼ 2πat/2λc ∼ Ms/4πσa2

t ∼ 4 × 104 wakes. Since the
wakes impose a non–axisymmetric density pattern upon the
ring, the ring’s self–attraction results in a torque that causes
the ring to spread radially. The viscosity associated with this
gravitational torque isνg ' CG2σ2/Ω3 [12] where the factor
C ' 18(r/aroche)

5 ' 160 in this application. Wakes also
appear to be genetically related to the spiral density waves that
are common in marginally stableQT ' 1 particle disks (c.f.
Takeda and Ida 2001): both have the same pitch angle of about
27◦, the same radial spacings of∼ λc between density crests,
and both cause radial spreading due to the viscosityνg.

The timescale for the gravitational torque to cause the ring
to spread a distance∆r is τg ' 2r∆r/3νg '
4(Ms/Mt)

2(∆r/r)3Porb/C wherePorb is the orbital period.
Although the ring–doubling timescale is initially quite short,
i.e., 2 × 103 years for∆r ' ∆ro, ring spreading soon stalls
due to the associated decrease in the ring’s surface density.
Meanwhile, accretion within the debris ring will generate a
subsequent generation of satellites. However these satellites
will also be susceptible to disruption by cometary impacts, so
this disruption–accretion cycle is destined to repeat again.
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