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ABSTRACT

A model that rapidly computes the secular evolution of a gravitating disk-planet system is developed. The
disk is treated as a nested set of gravitating rings, with the rings’/planets’ time evolution being governed by
the classical Laplace-Lagrange solution for secular evolution but modified to account for the disk’s finite
thickness h. The Lagrange planetary equations for this system yield a particular class of spiral wave solutions,
usually called apsidal density waves and nodal bending waves. There are two varieties of apsidal waves—long
waves and short waves. Planets typically launch long density waves at the disk’s nearer edge or else at a secu-
lar resonance in the disk, and these waves ultimately reflect downstream at a more distant disk edge or else at
a Q barrier in the disk, whereupon they return as short density waves. Planets also launch nodal bending
waves, and these have the interesting property that they can stall in the disk, that is, their group velocity
plummets to zero upon approaching a region in the disk that is too thick to support further propagation of
bending waves. The rings model is used to compute the secular evolution of a Kuiper Belt having a variety of
masses, and it is shown that the early massive belt was very susceptible to the propagation of low-amplitude
apsidal and nodal waves launched by the giant planets. For instance, these waves typically excited orbits to
e � sin i � 0:01 in a primordial Kuiper Belt of mass MKB � 30 Earth masses. Although these orbital distur-
bances are quite small, the resulting fractional variations in the disk’s surface density due to the short density
waves is usually large, typically of order unity. This epoch of apsidal and nodal wave propagation probably
lasted throughout the Kuiper Belt’s first �107 to �5� 108 yr, with the waves being shut off between the time
when the large Re100 km Kuiper Belt objects first formed and when the belt was subsequently eroded and
stirred up to its present configuration.

Subject headings: celestial mechanics — Kuiper Belt — planetary systems: protoplanetary disks —
solar system: formation

On-line material: mpg animation

1. INTRODUCTION

The Kuiper Belt is a vast swarm of comets orbiting at the
solar system’s outer edge. This belt is composed of debris
that was left over from the epoch of planet formation, and
this swarm’s distribution of orbit elements preserves a
record of events that occurred when the solar system was
still quite young. A common goal of nearly all dynamical
studies of the Kuiper Belt is to decipher this record. How-
ever, the record is still open to some interpretation.

The dots in Figure 1 show the Kuiper Belt object (KBO)
eccentricities e and inclinations i versus their semimajor axes
a. This figure reveals the KBOs’ three major dynamical
classes: the Plutinos, which inhabit Neptune’s 3 : 2 reso-
nance at a ¼ 39:5 AU; the ‘‘Main Belt ’’ KBOs, which are
the nonresonant KBOs orbiting between 40 AUdad48
AU; and the more distant ‘‘ Scattered Belt ’’ KBOs, which
live in eccentric, nearly Neptune-crossing orbits. The figure
also shows that the Plutinos and the Scattered KBOs have
inclinations that span 0�did30�, while the Main Belt
KBOs appear to have a bimodal distribution of inclinations
centered on i ’ 2� and i ’ 17� (Brown 2001). Note that
accretion models show that these large �100+ km KBOs
must have first formed from much smaller planetesimal
seeds that were initially in nearly circular and coplanar

orbits having e and sin id0:001 (Kenyon & Luu 1999).
However, gravitational self-stirring cannot account for the
Kuiper Belt’s current excited state, so one or more mecha-
nisms must also have stirred up the Kuiper Belt since the
time of formation.

The orbits of the Scattered KBOs are perhaps the most
easily understood. These objects have likely had one or
more close encounters with Neptune, which lofted these
bodies into eccentric, inclined orbits (Duncan & Levison
1997). Repeated encounters with Neptune cause these
objects’ semimajor axes and eccentricities to evolve stochas-
tically along the Neptune-crossing curve shown in Figure 1,
and most of these bodies are ultimately ejected or accreted
by the giant planets. However, Neptune has numerous
weak, high-order mean motion resonances that thread the
Kuiper Belt, and these resonances permit some of these
Scattered Belt objects to diffuse to lower eccentricities. This
allows a small percentage of the Scattered Belt objects to
persist over the age of the solar system at eccentricities just
below the Neptune-crossing curve seen in Figure 1 (Duncan
& Levison 1997). This diffusion to lower eccentricities might
also have been more pronounced if Neptune’s orbit also
migrated outward. In particular, Gomes (2003) shows that
during the epoch of planet migration, mean motion and sec-
ular resonances act as pathways that allow some scattered
KBOs to descend irreversibly into lower eccentricity orbits
that are far from the Neptune-crossing curve and hence sta-
ble. Since Scattered Belt KBOs have large inclinations of
ie10�, this process might also account for the Main Belt’s
bimodal inclination distribution, with the i � 2� component
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representing the Main Belt’s native population of low-
inclination KBOs, and the i � 17� being due to scattered
invaders who were deposited in the Main Belt by Neptune.
However, this process is quite inefficient, since only

" � 0:1% of these Scattered KBOs manage to find orbits
that are stable over a solar age (Gomes 2003).

The possibility that Neptune’s orbit has expanded out-
ward is also supported by the cluster of KBOs that inhabit

Fig. 1.—Maximum eccentricities, emax, and inclinations, imax, vs. semimajor axis a for simulations having a variety of Kuiper Belt masses,MKB; see x 4.2 for
model details. Dots indicate the orbits of 340 KBOs observed over multiple oppositions, with orbits provided by theMinor Planet Center. The locations of the
3 : 2 and 2 : 1 resonances are indicated, and orbits above the gray curve are Neptune crossing.
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Neptune’s 3 : 2 resonance (see Fig. 1). This may have
occurred when Neptune first formed and began to vigo-
rously scatter the local planetesimal debris. This process can
drive an exchange of angular momentum between the plan-
ets and the planetesimal disk (Fernandez & Ip 1984), so this
episode of disk clearing could have resulted in a rearrange-
ment of all of the giant planets’ orbits over a timescale of
�107 yr (Hahn & Malhotra 1999). Outward planet migra-
tion would also cause Neptune’s mean-motion resonances
to sweep out across the primordial Kuiper Belt, and these
migrating resonances are quite effective at capturing KBOs
and pumping up their eccentricities (Malhotra 1995). Mod-
els of this process show that if Neptune’s orbit had in fact
smoothly expanded some Da � 7 AU over a timescale
longer than a few million years, then resonance capture
would have deposited numerous KBOs in the 3 : 2 and 2 : 1
resonances with eccentricities distributed over 0ded0:3
(Malhotra 1995; Chiang & Jordan 2002). Although numer-
ousKBOs do indeed inhabit Neptune’s 3 : 2 resonance, only
a handful are known to live near the 2 : 1 resonance at
a ¼ 47:8 AU, and many of these bodies have eccentricities
of e � 0:3, which puts them quite near the Neptune-crossing
curve (see Fig. 1). Thus, it is possible that some or all of the
bodies orbiting near a ¼ 47:8 AUmight instead be members
of the Scattered Belt. If planet migration did indeed occur,
then the apparent low abundance of KBOs at the 2 : 1 reso-
nance is a mystery that can only be partly due to the obser-
vational bias that selects against the discovery of lower
eccentricity objects at the 2 : 1 resonance (Jewitt, Luu, &
Trujillo 1998).

Of particular interest here is the Main Belt, which pre-
serves additional evidence for another mechanism having
stirred up the Kuiper Belt. Again, if Neptune did indeed
migrate outward Da � 7 AU, then the entire Main Belt was
swept by the advancing 2 : 1 resonance. Models of planet
migration show that the efficiency of resonance capture is no
more than �50% (Chiang & Jordan 2002), so the current
members of theMain Belt evidently avoided permanent cap-
ture by slipping through the advancing 2 : 1 resonance. How-
ever, this planet migration scenario is utterly unable to
account for the high inclinations of 0�did30� observed in
theMainBelt (see Fig. 1), since theN-body simulations show
that the advancing 2 : 1 resonance typically excitesMain Belt
inclinations by only a few degrees (Malhotra 1995; Chiang&
Jordan 2002). Evidently, an additional mechanism is also
responsible for exciting the Main KBO Belt. It has been
shown that sizable KBO excitation could occur if a recently
formed Neptune had been scattered outward by Jupiter
and/or Saturn into a belt-crossing orbit (Thommes, Dun-
can, & Levison 2002). Another possible source of KBO exci-
tation is the invasion of the Main Belt by the Scattered Belt
(Gomes 2003). However, this latter process is a very ineffi-
cient mechanism, having " � 0:001; an alternate mechanism
that is possiblymore efficient is explored below.

It has also been suggested that secular resonance sweeping
may have been responsible for exciting the Kuiper Belt
(Nagasawa & Ida 2000). Note that the locations of the secu-
lar resonances are very sensitive to the solar system’s mass
distribution. Consequently, the depletion of the solar nebula
(which includes perhaps �99% of the solar system’s
initial mass content) could have driven these secular reso-
nances across vast tracts of the solar system. Indeed, the
model by Nagasawa & Ida (2000) suggests that if the nebula
was depleted on a timescale of � � 107 yr, Main Belt inclina-

tions of i � 20� could have been excited by the passage of the
�15 secular resonance as it swept outward to infinity as the
nebula was depleted.2 However, this model is rather ideal-
ized in that it treats the Kuiper Belt as massless, which is a
concern since a primordial Kuiper Belt having some mass is
also susceptible to the propagation of very long wavelength
spiral waves that could be launched at a secular resonance in
the disk (Ward &Hahn 1998a, 2003). This issue is worth fur-
ther examination, since wave action can alter the magnitude
of resonant excitation considerably (Hahn, Ward, & Rettig
1995;Ward&Hahn 1998a). But even if there is no resonance
in the disk, planets orbiting interior to a particle disk can still
launch these spiral waves at the disk’s inner edge (Ward &
Hahn 1998b). Preliminary results from a model of secular
resonance sweeping also reveals that a Kuiper Belt having
only a modest amount of mass is utterly awash in these
waves once the nebula is depleted (Hahn & Ward 2002).
However, the purpose of the present study is first to charac-
terize the properties of these waves in the simpler, postneb-
ula environment, and then to explore their cosmogonic
implications. Thus, the following will consider a suite of
models of the secular evolution of the outer solar system for
primordial Kuiper Belts having a variety ofmasses.

Accretion models tell us that the primordial Kuiper Belt
must have had a mass of MKB � 30 M� in the 30 AU <
a < 50 AU interval in order for Pluto and its cohort of
KBOs to have formed and survived over the age of the solar
system (Kenyon & Luu 1999). A similar Kuiper Belt mass is
also needed to drive Neptune’s orbital migration of Da � 7
AU (Hahn &Malhotra 1999). However, the current mass is
MKB � 0:2M� (Jewitt, Luu, & Trujillo 1998), so the Kuiper
Belt appears to have been eroded by a factor of �150. This
may be due to a dynamical erosion of the belt by Neptune
or possibly by other perturbers that may once have been
roaming about the outer solar system, as well as due to the
collisional erosion that has since ground all of the smaller
KBOs down to dust grains that are then removed from the
solar system by radiation forces (Kenyon & Luu 1999; Ken-
yon & Bromley 2001). The following will give results
obtained from models of the secular evolution of the outer
solar system for Kuiper Belts having masses in the interval
0 � MKB � 30 M�.

Section 2 derives the so-called rings model that will be
used to study the secular evolution of disk-planet systems;
the reader uninterested in these details might skip ahead to
x 3 or x 4. Since spiral density and bending waves appear
prominently in the model results, their properties are exam-
ined in x 3. Section 4 describes the model’s application to the
primordial Kuiper Belt, and a summary of results is then
given in x 5.

2 It should be noted that the resulting inclination excitation is also sensi-
tive to the tilt between the nebula midplane and the invariable plane. For
instance Nagasawa & Ida (2000) place the nebula midplane in the ecliptic,
and this results in substantial excitation. But if the nebula midplane is
instead placed in the invariable plane, which is tilted 1=6 from the ecliptic,
then almost no excess excitation results (Hahn &Ward 2002). We also note
that the nebula models of Nagasawa & Ida (2000) as well as Hahn &Ward
(2002) both treat the gas disk as a rigid slab of gas. However, a more realis-
tic treatment would allow the nebula disk to flex and warp in response to
the planets’ secular perturbations. It is suspected that this additional degree
of freedom will substantially alter the secular resonance sweeping; indeed,
it can be argued that the �15 never did sweep across the Kuiper Belt on
account of this flexure (E. Chiang & W. Ward 2002, private communica-
tion), so perhaps secular resonance sweeping of the Kuiper Belt is actually a
moot issue.
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2. THE SECULAR EVOLUTION OF
DISK-PLANET SYSTEMS

This section treats the disk as a collection of nested gravi-
tating rings in orbit about the Sun. Their mutual perturba-
tions will cause these rings to slowly flex and tilt over time,
and this evolution is governed by the Lagrange planetary
equations.

2.1. The RingsModel

Begin with the gravitational potential that a single per-
turbing ring of mass m0 exerts at the point r on another ring
of massm:

�0ðrÞ ¼ �
Z

G�0 dV 0

D
; ð1Þ

where G is the gravitation constant, �0 is the mass density of
the differential volume element dV 0, D is the separation
between the perturbing mass element �0dV 0 at r0 and the
field point r, and the integration proceeds over the three-
dimensional extent of ring m0. Hereafter, primed quantities
refer to the perturbing ring m0, and unprimed quantities
refer to the perturbed ringm. Each ring can be thought of as
a swarm of numerous particles all having a common semi-
major axis a and an identical mean orbital eccentricity e,
inclination i, longitude of periapse ~!!, and longitude of
ascending node �. It is also assumed that these particles
have an isotropic dispersion velocity c that gives rise to the
ring’s finite radial and vertical half-thickness h ’ c=n, where
n is the ring’s mean motion. It is also assumed that the den-
sity �0 varies only in the azimuthal direction because of the
Keplerian motion of the ring’s particles; in this case the den-
sity is �0 ¼ �0=4h02, where

�0 ¼ m0r0

2�a02
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e02

p ð2Þ

is the ring’s azimuthal mass per unit length (Murray &
Dermott 1999). In cylindrical coordinates r0 ¼ ðl0; �0; z0Þ and
dV 0 ¼ l0 dl0 d�0 dz0. If the slight radial variations in the inte-
grand of equation (1) are ignored (i.e.,

R
l0 dl0 ’ 2r0h0), the

potential becomes

�0ðrÞ ’ �
Z �

��

d�0
Z z0

0
þh0

z0
0
�h0

dz0
G�0r0

2h0D
; ð3Þ

where z00ð�0Þ is the longitude-dependent height of the per-
turbing ring’s midplane from the z ¼ 0 plane. Of course, the
perturbed ringm also has a radial and vertical half-thickness
h, and it is useful to form an effective potential by averaging
�0ðrÞ over the radial and vertical extent of ringm:

�0ðrÞh i ¼
Z h

�h

dl

2h

Z z0þh

z0�h

dz

2h
�0ðrÞ � �

Z �

��

d�0 G�0r0

r
Q ; ð4Þ

where

Q ’
Z z0þh

z0�h

dz

2h

Z z0
0
þh0

z0
0
�h0

dz0

2h0
r

D
; ð5Þ

where again the slight variations in the integrand with l are
ignored, and only D is assumed to be sensitive to the varia-
tions in z and z0. Note that this averaging of �0 is essential
in order for the algorithm developed below to conserve
angular momentum.

The next task is to evaluate the double integrals in Q.
First note that the separation D between the perturbing
mass element �0 dV 0 at r0 and the field point r obeys D2 ¼
r2 þ r02 � 2½ðr2 � z2Þðr02 � z02Þ�1=2 cosð�0 � �Þ � 2zz0, where
r2 ¼ l2 þ z2. Setting � � r0=r, � � z=r, and �0 � z0=r0, then

D

r

� �2

’1þ �2 � 2� cosð�0 � �Þ

þ ð�2 þ �02Þ� cosð�0 � �Þ � 2���0 ð6Þ

to second order in �, which are of order the rings’ inclina-
tions and are assumed to be small. Inserting this into the
expression forQ yields

Q ¼ 1

4hh0

Z �0þh

�0�h

d�

Z �0
0
þh0

�0
0
�h0

d�0
h
1þ �2 � 2� cosD�

þ ð�2 þ �02Þ� cosD�� 2���0
i�1=2

¼
Z �0

0
þh0

�0
0
�h0

lnð�Þd�0

4hh0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� cosD�

p ; ð7Þ

where h � h=r ’ h=a and h0 � h0=r0 ’ h0=a0 are the frac-
tional half-thicknesses of rings m and m0, �0 � z0=r and
�0
0 � z00=r

0 are the rings’ midplane latitudes, D� � �0 � �,
and the right-hand side of equation (7) is the result of doing
the integration in �, where

� ¼
�0�� �0� cosD�� h� cosD��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� cosD�ð�þ "Þ

p
�0�� �0� cosD�þ h� cosD��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� cosD�ð�� "Þ

p ;

ð8Þ

with � ¼ 1þ �2 � 2� cosD�þ ð�2
0 þ h2 þ �02Þ� cosD��

2��0�0 and " ¼ 2hð�0 cosD�� �0Þ�. The � and the h are
assumed to be small, so " is second order in the small quanti-
ties and is negligible when compared to other terms. Thus,

� ’ 1� ½�0�� �0� cosD�� h� cosD��=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� cosD��

p

1� ½�0�� �0� cosD�þ h� cosD��=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� cosD��

p

’1þ 2h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� cosD�

�

r
; ð9Þ

so ln� ’ 2h � cosD�=�ð Þ1=2. This is inserted back into
equation (7) and the remaining integral over �0 is evaluated
similarly, yieldingQ ’ lnð�Þ=2h0 � cosD�ð Þ1=2, where

� ¼ 1�
�0�� �0

0� cosD�� h0� cosD�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� cosD�ð�þZþ 	Þ

p
" #

� 1�
�0�� �0

0� cosD�þ h0� cosD�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� cosD�ð�þZ� 	Þ

p
" #�1

’1þ 2h0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� cosD�

�þZ
;

s
ð10Þ

where � � 1þ �2 � 2� cosD�ð1�H2Þ’ð1þ �2Þð1þH2Þ
�2� cosD�, H2 � ðh2 þ h02Þ=2, Z ¼ ð�2

0 þ �02
0 Þ� cosD��

2��0�
0
0, and 	 � 2h0ð�0

0 cosD�� �0Þ� is another negligible
term. Inserting ln� ’ 2h0½� cosD�=ð�þZÞ�1=2 back into
Q yields

Q ’ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þZ

p ’ ��1=2 � 1

2
Z��3=2 : ð11Þ
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A Fourier expansion of ��s will be useful, i.e.,��s ¼
1
2

P1
m¼�1

~bb
ðmÞ
s cosmð�0 � �Þ, where

~bb
ðmÞ
s ð�; h; h0Þ ¼ 2

�

Z �

0

cosðm�Þd�
fð1þ �2Þ½1þ 1

2 ðh
2 þ h02Þ� � 2� cos�gs

ð12Þ

is the softened Laplace coefficient. The usual unsoftened
form is b

ðmÞ
s ð�Þ ¼ ~bb

ðmÞ
s ð�; 0; 0Þ. These two coefficients

are nearly equal when � is far from unity, but the softened
form is finite at � ¼ 1, whereas the unsoftened form
diverges. WritingQ in terms of softened Laplace coefficients
thus gives

Q’ 1
2

X1
m¼�1

cosmð�0 � �Þ

�
�
~bb
ðmÞ
1=2 �

�
1
2 ð�

2
0 þ �02

0 Þ� cosð�0 � �Þ � �0�
0
0�

�
~bb
ðmÞ
3=2

�
; ð13Þ

which is then inserted in equation (4) to get the perturbing
ring’s potential,

�0h i ¼ �
Z �

��

d�0G�0r0

2r

X1
m¼�1

cosmð�0 � �Þ

�
�
~bb
ðmÞ
1=2 �

	
1

2
ð�2

0 þ �02
0 Þ� cosð�0 � �Þ ���0�

0
0



~bb
ðmÞ
3=2

�
:

ð14Þ

The final task of this section is to write the ring’s
coordinates in terms of its orbit elements,

r ’ a 1� e cos � � 1
2 e

2 þ 1
2 e

2 cos 2�
� 

; ð15aÞ
� ¼ ~!!þ � ’ ~!!þM þ 2e sinM ; ð15bÞ

�0 ¼
z0
r
’ sin i sinð�� �Þ ; ð15cÞ

where � is the true anomaly of a ring element at r, and
M ¼ nt is the correspondingmean anomaly. Inserting equa-
tions (15) into the potential �0h i, expanding to second order
in e and i, doing the �0 integration in equation (14), and time
averaging the resulting expression over the orbital period of
ring m then yields the time-averaged potential ���0

� �
experi-

enced by ring m due to ring m0 assuming small eccentricities
and inclinations:

���0� �
¼ � Gm0

a

	
1

2
~bb
ð0Þ
1=2 þ

1

8
ðe2 þ e02Þf þ 1

4
ee0 cosð~!!0 � ~!!Þg

� 1

8
ði2 þ i02Þ�~bbð1Þ3=2 þ

1

4
ii0 cosð�0 � �Þ�~bbð1Þ3=2



; ð16Þ

where the f and g functions are

f ð�; h; h0Þ ¼ 2�
@

@�
þ �2 @2

@�2

� �
b
ð0Þ
1=2

¼ �~bb
ð1Þ
3=2 � 3�2H2ð2þH2Þ~bbð0Þ5=2 ; ð17aÞ

gð�; h; h0Þ ¼ 2� 2�
@

@�
� �2 @2

@�2

� �
b
ð1Þ
1=2

¼ � �~bb
ð2Þ
3=2 þ 3�2H2ð2þH2Þ~bbð1Þ5=2 ; ð17bÞ

where H2 ¼ 1
2 ðh

2 þ h02Þ and � has been redefined as
� ¼ a0=a. The right-hand side of equations (17) is derived in

Appendix A, and it is shown in Appendix B that the
softened Laplace coefficients can be written in terms of com-
plete elliptic integrals. Consequently, functions f, g, and ~bb

ðmÞ
s

can all be rapidly evaluated without relying on a numerical
integration of equation (12). Also note that the ~bb

ðmÞ
s , f, and g

functions obey the following reciprocal relations:

~bb
ðmÞ
s ð��1; h0; hÞ ¼ �2s~bb

ðmÞ
s ð�; h; h0Þ ; ð18aÞ

f ð��1; h0; hÞ ¼ �f ð�; h; h0Þ ; ð18bÞ
gð��1; h0; hÞ ¼ �gð�; h; h0Þ : ð18cÞ

These relations are used in x 2.2.1 to show that the equations
of motion developed below conserve angular momentum.

The laborious procedure of expanding, integrating, and
then time-averaging �0h i is not included here, since a similar
analysis can be found in Murray & Dermott (1999).3 Since
the terms proportional to e02 and i02, as well as the first term
in equation (16), do not contribute to the resulting dynami-
cal equations, they may be neglected. The disturbing func-
tion R for ring m due to another ring m0 is �1� the
surviving terms in ���0

� �
, i.e.,

R ¼ Gm0

a

	
1

8
fe2 þ 1

4
gee0 cosð~!!0 � ~!!Þ

� 1

8
�~bb

ð1Þ
3=2i

2 þ 1

4
�~bb

ð1Þ
3=2ii

0 cosð�0 � �Þ


: ð19Þ

Note that when h ¼ h0 ¼ 0, the disturbing function for a
point mass m perturbed by point mass m0 is recovered
(Brouwer & Clemence 1961; Murray & Dermott 1999),
which is to be expected since both a point mass and a thin
ring have the same disturbing function to this degree of
accuracy (Murray &Dermott 1999).

It should also be noted that many celestial mechanics
texts develop two distinct expressions for the disturbing
function R, one due to a perturber in an interior orbit
having a0 < a, and another expression due to an exterior
perturber having a0 > a (e.g., Brouwer & Clemence 1961;
Murray & Dermott 1999). However, this pairwise develop-
ment is unnecessary in this application since equation (19) is
valid for � ¼ a0=a < 1 as well as for � > 1. Indeed, it is
straightforward to show that these pairs of disturbing
functions, such as equations (7.6) and (7.7) in Murray &
Dermott (1999), are in fact equivalent to equation (19) with
h ¼ h0 ¼ 0; they only appear distinct, since one is a function
of � and the other is actually a function of ��1.

In terms of the variables

h ¼ e sin ~!! ; p ¼ i sin� ; ð20aÞ
k ¼ e cos ~!! ; q ¼ i cos� ; ð20bÞ

the disturbing function can then be written

R ¼ n2a2
m0

M	 þm

� �	
1

8
f h2 þ k2
� 

þ 1

4
g hh0 þ kk0ð Þ

� 1

8
�~bb

ð1Þ
3=2 p2 þ q2

� 
þ 1

4
�~bb

ð1Þ
3=2 pp0 þ qq0ð Þ



; ð21Þ

where the mean motion n ¼ ½GðM	 þmÞ=a3�1=2, with M	
being the solar mass.

3 Actually, Murray &Dermott (1999) derive the time-averaged accelera-
tion (rather than a potential) that ringm0 exerts onm, which they insert into
the Gauss equations to obtain a set of dynamical equations equivalent to
that obtained here when h ¼ 0.
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2.1.1. The N-Ring Problem

For the more general problem of N perturbing rings,
replace the perturbing ring mass m0 with mk and give all the
other primed quantities the subscript k. The disturbing
function R ! Rj for the perturbed ring having a mass
m ! mj is sum of equation (21) over all the other rings
k 6¼ j. Setting �jk � ak=aj, nj ¼ ½GðM	 þmjÞ=a3j �

1=2, and

Ajj ¼
nj
4

X
k 6¼j

mk

M	 þmj

� �
f ð�jk; hj; hkÞ ; ð22aÞ

Ajk ¼ nj
4

mk

M	 þmj

� �
gð�jk; hj; hkÞ; j 6¼ k ; ð22bÞ

Bjj ¼ � nj
4

X
k 6¼j

mk

M	 þmj

� �
�jk

~bb
ð1Þ
3=2ð�jk; hj; hkÞ ; ð22cÞ

Bjk ¼ nj
4

mk

M	 þmj

� �
�jk

~bb
ð1Þ
3=2ð�jk; hj ; hkÞ; j 6¼ k ; ð22dÞ

that sum becomes

Rj ¼ nja
2
j

�
1
2Ajjðh2j þ k2j Þ þ

X
k 6¼j

Ajkðhjhk þ kjkkÞ

þ 1
2Bjjðp2j þ q2j Þ þ

X
k 6¼j

Bjkðpjpk þ qjqkÞ
�

ð23Þ

in the notation of Murray & Dermott (1999). The Ajk and
the Bjk can be regarded as two N �N matrices A and B
whose entries describe the magnitude of the mutual gravita-
tional interactions that are exerted among the N rings. In
the following discussion, quantities having a j subscript
always refer to the perturbed ring in question, while the k
subscript always refer to another perturbing ring.

The time variation of the rings’ orbit elements is given by
the Lagrange planetary equations; to lowest order in e and i,
these are (Brouwer & Clemence 1961; Murray & Dermott
1999)

dhj
dt

’ @Rj=@kj

nja
2
j

¼
XN
k¼1

Ajkkk ; ð24aÞ

dkj
dt

’ � @Rj=@hj

nja
2
j

¼ �
XN
k¼1

Ajkhk ; ð24bÞ

dpj
dt

’ @Rj=@qj

nja
2
j

¼
XN
k¼1

Bjkqk ; ð24cÞ

dqj
dt

’ � @Rj=@pj

nja
2
j

¼ �
XN
k¼1

Bjkpk ; ð24dÞ

and their well-known Laplace-Lagrange solution is

hjðtÞ ¼
XN
i¼1

Eji sinðgitþ �iÞ ; ð25aÞ

kjðtÞ ¼
XN
i¼1

Eji cosðgitþ �iÞ ; ð25bÞ

pjðtÞ ¼
XN
i¼1

Iji sinð fitþ 
iÞ ; ð25cÞ

qjðtÞ ¼
XN
i¼1

Iji cosð fitþ 
iÞ ; ð25dÞ

where gi is the ith eigenvalue of the A matrix, fi is the ith
eigenvalue of B, Eji is the N �N matrix formed from the N
eigenvectors to A, Iji is the matrix of eigenvectors to B, and
�i and 
i are integration constants.

To apply this rings model, first assign to the N rings their
massesmj, their semimajor axes aj, and their fractional half-
thickness hj. Planets are represented as thin rings having
hj ¼ 0. Then construct the system’s A and B matrices and
compute their eigenvalues gi and fi, and the eigenvector
arrays Eji and Iji. The rings’ initial orbits ejð0Þ; ijð0Þ; ~!!jð0Þ,
and �jð0Þ are then used to determine the integration con-
stants �i and 
i, as well as to rescale the eigenvectors Eji and
Iji such that equations (25) agree with the initial conditions.
A handy recipe for this particular task is given in Murray &
Dermott (1999). Equations (25) are then used to compute
the system’s time history, and orbit elements are recovered
via e2j ¼ h2j þ k2j , i

2
j ¼ p2j þ q2j , tan ~!!j ¼ hj=kj, and tan�j ¼

pj=qj.
The rather laborious derivation given above thus con-

firms the assertion by Tremaine (2001) that one only needs
to soften the Laplace coefficients in order to use the
Laplace-Lagrange solution for calculating the secular evo-
lution of a continuous disk. However, x 2.2.1 shows that this
softening must be done judiciously, such that equation (18a)
is obeyed in order for the solution to preserve the system’s
angular momentum.

2.2. Tests of the RingsModel

Several tests have been devised in order to demonstrate
that the rings model described above behaves as expected.

2.2.1. AngularMomentum Conservation

The equations developed above conserve the system’s
total z-component of angular momentum, Lz ¼

P
j mjnja2j

ð1� e2j Þ
1=2 cosðijÞ. To show this, expand Lz to second order

in e0 and i0, which is the same degree of precision to which
the disk potential is developed above. This gives Lz ’ L0�
Le � Li, where

Le ¼ 1
2

X
j

mjnja
2
j e

2
j ; ð26aÞ

Li ¼ 1
2

X
j

mjnja
2
j i
2
j ; ð26bÞ

and L0 ¼
P

j mjnja
2
j is a constant. We show in Appendix C

that the dynamical equations (24) conserve angular
momenta to second order in e and i, that is, dLe=dt ¼ 0 and
dLi=dt ¼ 0. When the rings model is used to calculate the
secular evolution of a ‘‘ sparse ’’ system, such as the Jupiter-
Saturn system described below or one composed of all four
giant planets, the angular momenta Le and Li are preserved
to near machine limits to a fractional precision of �10�7 in
this single floating-point implementation. This is true
regardless of whether the planets are represented as thin
rings having hj ¼ 0 or as thick rings with hj > 0. However,
Lz conservation is a little worse, �10�6, in the ‘‘ crowded ’’
systems described in x 4 that consist of a few planets plus a
disk comprising many closely packed rings. These errors are
always smaller, by a factor of �104 to 105, than the angular
momenta associated with the disturbances and waves seen
in these disks. Thus, the wavelike disk behavior reported
below is real and is not due to a diffusion of some numerical
error.
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2.2.2. Jupiter and Saturn

Murray & Dermott (1999) use the Laplace-Lagrange
planetary solution, equations (25), to study a system com-
posed of Jupiter and Saturn. The rings model developed
here reproduces that system’s A and Bmatrices, eigenvector
arrays Eji and Iji, eigenvalues gi and fi, and integration con-
stants �i and 
i, to the same precision quoted by Murray &
Dermott (1999), provided one sets nj ¼ ðGM	=a

3
j Þ

1=2 and
hj ¼ 0. The rings model also reproduces the figures in
Murray & Dermott (1999) that show this system’s orbital
history, as well as the figures showing the forced orbit ele-
ments of numerous other massless ‘‘ test rings ’’ orbiting
throughout this system. However, is should be noted that
rigorous angular momentum conservation actually requires
setting nj ¼ ½GðM	 þmjÞ=a3j �

1=2 instead.

2.2.3. Precession in an Axisymmetric Disk

Heppenheimer (1980) points out that a massless test par-
ticle orbiting in a smooth, axisymmetric disk experiences a
regression of its longitude of periapse, i.e., _~!!~!! < 0, which is
the opposite of the usual prograde apse precession that
occurs throughout the solar system. As Ward (1981) shows,
it is the nearby disk parcels whose orbits actually cross the
test particle’s orbit that drive periapse regression at a rate
that exceeds the prograde contribution from the more
distant parts of the disk.

The rings code also reproduces this phenomenon. An
annulus having a surface density �0, mass �m0 ¼ 2��0a0da0, a
semimajor axis a0, and a fractional half-thickness h0 contrib-
utes �R ¼ n2a2½ f ð�; 0; h0Þe2 � �~bb

ð1Þ
3=2ð�; 0; h

0Þi2��m0=8 M	 to
the particle’s disturbing function (see eq. [19] with e0 ¼
i0 ¼ 0). Adopting a power law in the disk surface density,
�0 ¼ �ðaÞ��r where � ¼ a0=a, the total disturbing function
integrated across a semi-infinite disk is

R ¼
Z

�R ¼ 1
2 ldn

2a2 I~!!e
2 � I�i

2
� 

; ð27Þ

where ld ¼ ��ðaÞa2=M	 ¼ �G�=an2 is the so-called
normalized disk mass and

I~!! ¼ 1
2

Z 1

0

�1�rf ð�; 0; h0Þ d� ; ð28aÞ

I� ¼ 1
2

Z 1

0

�2�r~bb
ð1Þ
3=2ð�; 0; h

0Þ d� : ð28bÞ

Note that I~!! and I� are double integrals according to the
definitions of ~bb

ðmÞ
s and f, equations (12) and (17a). However,

these integrals are analytic for selected power laws r. For
instance, setting r ¼ 1 or 2 and then instructing symbolic
math software such as MAPLE to do the radial integration
first and the angular integration second yields I~!! ¼ �1=
ð1þ h02=2Þ1=2 ’ �1 and I� ¼ ½h0�1 þ ð1þ h02=4Þ1=2 þ h0=2�=
½ð1þ h02=4Þð1þ h02=2Þ�1=2 ’ 1=h0 for small h0. The Lagrange
planetary equations then give the test ring’s precession
rates:

_~!!~!! ’ @R=@e

na2e
¼ I~!!ldn ’ �ldn ; ð29aÞ

_�� ’ @R=@i

na2i
¼ �I�ldn ’ � ldn

h0
: ð29bÞ

Very similar precession rates were previously derived in

Heppenheimer (1980) and Ward (1981). Note that the
model rings start to overlap when their fractional radial
thickness 2h0 exceeds the rings’ fractional separation � ¼
Da=a, so a massless test ring should precess at the above
rates when the disk rings are sufficiently overlapping.

These expectations are tested by constructing a 50 M�
disk having an r ¼ 2 power-law surface density using 200
circular, coplanar rings arranged over 10 AU < a < 100
AU, with a number of thin, massless ‘‘ test rings ’’ also orbit-
ing within this disk. Several simulations are performed with
the massive rings having a variety of thicknesses h0. As
expected, those test rings that reside far from the disk’s
edges precess at rates given by equation (29) whenever the
disk rings are sufficiently overlapping, namely, when
h0 
 2�.

2.2.4. Precession in an Eccentric Disk

Although a particle’s periapse will experience retrograde
precession when embedded in an axisymmetric disk, pro-
grade precession is possible in a nonaxisymmetric disk. For
instance, prograde precession is evident in theN-body simu-
lations of an eccentric stellar disk orbiting the putative black
hole at the center of the Andromeda galaxy M31 (Jacobs &
Sellwood 2001). These simulated disks have masses �0.1
times the central mass, with the interior parts of the disk
being progressively more eccentric. These simulations reveal
a long-lived overdense region in the direction of apoapse
that persists because of a coherent alignment of the par-
ticles’ periapse, with the density pattern rotating in a pro-
grade sense at rates that increase with the disk mass. It
should be noted that the disk particles’ eccentricities are not
always small, so these N-body simulations cannot be used
as a quantitative benchmark for the rings code. Nonethe-
less, it is comforting to find that the rings code does indeed
reproduce the density patterns seen in theN-body disks that
precess at rates very similar to that reported in Jacobs &
Sellwood (2001).

3. SPIRAL WAVE THEORY

Section 4 uses the preceding rings model to demonstrate
that apsidal density waves and nodal bending waves may
have once propagated throughout the Kuiper Belt. An apsi-
dal wave is a one-armed spiral density wave that slowly
rotates over a periapse precession timescale. Similarly, a
nodal wave is a one-armed spiral bending wave that rotates
over a nodal precession timescale.

A brief review of spiral wave theory is in order. Many of
the waves’ properties, such as their wavelength and propa-
gation speed, are readily extracted from the waves’ disper-
sion relations. These dispersion relations are usually ob-
tained from solutions to the Poisson and Euler equations
for the disk. However, the following discussion will show
that these dispersion relations can also be derived from the
Lagrange planetary equations.

3.1. Apsidal DensityWaves

The disturbing function RðaÞ for the disk material orbit-
ing at a semimajor axis a is obtained from equation (19) with
the perturbing massm0 replaced by the differential mass dm0,
whose contributions are integrated across a semi-infinite
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disk:

RðaÞ ¼ 1
2ldn

2a2

�
Z 1

0

�1�r
�
1
2 e

2f ð�; h; hÞ

þ ee0 cosð~!!0 � ~!!Þgð�; h; hÞ
�
d� : ð30Þ

where e0ð�Þ and ~!!0ð�Þ are the orbit elements of the perturb-
ing parts of the disk, the unprimed quantities refer to the
perturbed annulus at a, r is the power law for the disk’s
surface density variation, and a constant fractional thick-
ness h is assumed throughout the disk. The Lagrange plane-
tary equations then give the disk’s periapse precession rate
at a:

_~!!~!!ðaÞ ’ @R=@e

na2e
¼ ldnðI~!! þ IdwÞ ; ð31Þ

where I~!! ’ �1 is from the left-hand term in equation (30)
and is the contribution by an undisturbed disk to its own
precession (see eqs. [28]–[29]), and the right-hand term is

Idw ¼ 1

2

Z 1

0

e0

e
cosð~!!0 � ~!!Þ�1�rgð�; h; hÞd� ; ð32Þ

which is the relative rate at which the density wave drives its
own precession.

It is expected that the eccentricities associated with a spi-
ral density wave will vary only slowly with distance a, such
that e0ð�Þ=e ’ 1. The spiral wave will also organize the
disk’s longitude of periapse ~!! such that it varies as
~!!ða; tÞ ¼ _~!!~!!t�

R a
kðAÞdA, where kðaÞ is the wavenumber

and � ¼ 2�=jkj is the radial wavelength. If the spiral wave
pattern is tightly wound such that �5 a and jkaj41, then
the dominant contributions to Idw are largely due to the
nearby parts of the disk where � ¼ a0=a � 1� �=a and
~!!0 � ~!! ¼ �

R a0

a kðAÞdA ’ �kða0 � aÞ, while the contribu-
tions from the more distant parts of the disk tend to cancel
owing to the rapid oscillation of the cosine factor. Thus we
can set � ¼ 1 in equation (32) except where it appears as the
combination x ¼ �� 1 where jxj5 1. In this case the soft-
ened Laplace coefficients that are present in the g function
can be replaced with the approximate forms that are valid
for jxj5 1 (see eq. [B5]), so g becomes

gðxÞ ’ 2

�

2h2 � x2

ð2h2 þ x2Þ2
: ð33Þ

It is also permitted to extend the lower integration limit in
equation (32) to�1 in the tight-winding limit, so

Idw ’ 1
2

Z 1

�1
cosðjkajxÞgðxÞ dx ¼ jkaje�

ffiffi
2

p
hjkaj : ð34Þ

And finally, if the wave is to remain coherent across this
disk, this self-precession must occur at the same constant
rate ! throughout the disk, so _~!!~!!ðaÞ ¼ ! ’ ldðjkaje�

ffiffi
2

p
hjkaj

�1Þn. Note that this disturbing frequency !, which is also
called the pattern speed, can also be identified as any one
of the eigenfrequencies gi that appear in equations (25).
Usually it is another perturber that is responsible for
launching the wave and causing the disk to precess in con-
cert at the rate !, and this is usually at a rate that dominates
over the nonwave contribution to the disk’s precession, i.e.,
j!j4ldn. This then yields the dispersion relation for tightly

wound apsidal density waves:

! ’ e�
ffiffi
2

p
hjkajld jkajn ; ð35Þ

which has the dimensionless form

!eðKÞ ¼ Ke�K ; ð36Þ

where !e ¼
ffiffiffi
2

p
h!=ldn is the dimensionless frequency and

K ¼
ffiffiffi
2

p
hjkaj is the dimensionless wavelength; Figure 2 plots

!e versus K. A more general dispersion relation for an
m-armed spiral wave in a stellar disk is given in Toomre
(1969), and in the limit that j!j5 n the resulting formula
with m ¼ 1 behaves qualitatively quite similar4 to equation
(36). Note that equation (35) also recovers the usual
dispersion relation ! ¼ ld jkajn for apsidal waves in an
infinitesimally thin disk when h ¼ 0.

Note that !eðKÞ > 0 and that it also has a maximum at
K ¼ 1 where !eð1Þ ¼ expð�1Þ. Since !e is a function of
semimajor axis a, the restriction 0 < !eðaÞd0:368 indicates
that apsidal waves can only propagate in a restricted

Fig. 2.—Top: Dispersion relation !e ¼ Ke�K for apsidal density waves.
Bottom: Dispersion relation !i ¼ e�K � 1 for nodal bending waves.

4 In this limit, Toomre’s dispersion relation becomes !T ðKÞ ¼ KF
where the reduction factor F is a more complicated function of K. How-
ever, a numerical evaluation of this function shows that !T ðKÞ has the same
form as the !eðKÞ curve shown in Fig. 2.
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interval in a. This restriction can also be viewed as a
constraint on the disk thickness, namely,

hd0:260ld jn=!j � hQ : ð37Þ

Alternatively, equation (37) can also be viewed as an upper
limit on the frequency ! or a lower limit on the disk mass ld
wherein wave action is permitted.

Waves having a wavenumber K < 1 are called long
waves, since they have a wavenumber jkLj ’ ð!=nÞ=lda and
the longer wavelength �L ¼ 2�=jkLj ’ 2�ldðn=!Þa, while
short waves have wavenumbers K > 1 or jkSj > 1=

ffiffiffi
2

p
ha

and the shorter wavelength �S ¼ 2�=jkSj < 2
ffiffiffi
2

p
�ha. These

long and short density waves also correspond to the g and p
modes, respectively, of Tremaine (2001). Writing �L in
terms of hQ and then requiring h < hQ also means that
apsidal waves can propagate wherever �Le24h.

The rate at which apsidal waves propagate across the disk
is given by their group velocity

cg ¼
d!

dk
¼ skldð1� KÞe�Kna ; ð38Þ

where sk ¼ sgn ðkÞ. Waves with sk ¼ þ1 are called trailing
waves, and their longitude of perihelia ~!! decreases with
increasing semimajor axis a, while sk ¼ �1 are leading
waves whose longitude increases with a. Since the waves’
group velocity cg is proportional to the slope of the !eðKÞ
curve, the site where K ¼ 1 is a turning point where wave
reflection occurs; in galactic dynamics this reflection site is
known as a Q barrier. A long wave that approaches the Q
barrier from the K < 1 side of Figure 2 thus reflects as a
short wave as it continues along the K > 1 side of the curve.
The simulations shown in x 4 also show that long trailing
waves that instead strike a disk edge also reflect as short
trailing waves.

3.2. Surface Density Variations

The compression or rarefaction among the disk’s rings,
or streamlines, is ð@r=@aÞ�1, which is also the relative
change in the disk’s surface density �=�0 associated with a
density wave (e.g., Borderies, Goldreich, & Tremaine 1985).
For a small amount of compression, �=�0 ¼ 1þ D�=�0,
where the fractional surface density variation is

D�

�0
¼ @r

@a

� ��1

�1 ’ @ðeaÞ
@a

cosð�� ~!!Þ þ ea
@ ~!!

@a
sinð�� ~!!Þ

ð39Þ

to lowest order in e. The second term dominates over the
first in the tight-winding limit, so jD�=�0j � OðejkajÞ. Den-
sity waves are nonlinear when jD�=�0j > 1, and these large
density variations are a consequence of overlapping stream-
lines. For long density waves having a wavenumber jkLj ¼
!=ldan, the disk’s streamlines will cross when the waves’
eccentricities exceed eL � ld!=n, while streamline crossing
occurs among short waves when eccentricities exceed eS �ffiffiffi
2

p
h. As the simulations of x 4 show, a dynamically cool

Kuiper Belt is very susceptible to the propagation of short
nonlinear density waves that facilitate streamline crossing.
Depending on the relative velocities of these crossed stream-
lines, apsidal wave action might either encourage accretion
or enhance collisional erosion amongKBOs.

3.3. Nodal BendingWaves

The derivation of the dispersion relation for nodal bend-
ing waves, and its analysis, proceeds similarly. The disk’s
integrated disturbing function is

RðaÞ ¼ � 1
2 ldn

2a2

�
Z 1

0

�2�r~bb
ð1Þ
3=2ð�; h; hÞ

�
1
2 i

2 � ii0 cosð�0 � �Þ
�
d� ;

ð40Þ

so the Lagrange planetary equation gives

_��ðaÞ ’ @R=@i

na2i
¼ ldnðIbw � I�Þ ; ð41Þ

where�ða; tÞ ¼ _��t�
R a

kðAÞ dA, and

Ibw ¼ 1

2

Z 1

0

�2�r~bb
ð1Þ
3=2ð�; h; hÞ cos½kað�� 1Þ� d�

’ e�
ffiffi
2

p
hjkajffiffiffi
2

p
h

ð42Þ

is the bending wave’s contribution to its own precession.
The contribution from the undisturbed disk is I� ’ 1=

ffiffiffi
2

p
h,

where the additional
ffiffiffi
2

p
factor is the result of changing the

middle argument in equation (28b) from 0 to h. Since ! ¼ _��
is a constant for a coherent wave, the dispersion relation for
tightly wound nodal bending waves is

! ’ ldffiffiffi
2

p
h

�
e�

ffiffi
2

p
hjkaj � 1


n : ð43Þ

Note that the usual dispersion relation for nodal waves in
an infinitesimally thin disk, ! ’ �ld jkajn, is obtained when
h ! 0.

The dimensionless form of the dispersion relation is

!iðKÞ ¼ e�K � 1 ; ð44Þ

where !i ¼
ffiffiffi
2

p
h!=ldn, and is plotted in Figure 2. As the fig-

ure shows, nodal bending waves can propagate only
in regions where �1 < !iðaÞ < 0, which similarly limits
the disk thickness to hd2:72hQ. The nodal waves’ group
velocity is

cg ¼
d!

dk
¼ �skldð1þ !iÞna ; ð45Þ

which indicates that nodal waves tend to stall, i.e., jcgj ! 0
as they approach the !i ¼ �1 boundary. Note that this dis-
persion relation only admits a long-wavelength solution
having a wavenumber jkLj ’ �!=ldna and a wavelength
�L ’ 2�ld jn=!ja for waves far from the stall zone. Since
hd2:72hQ, the disk can sustain nodal waves wherever
�Le9h. But if an outward-traveling long leading wave with
sk ¼ �1 encounters a disk edge, it will reflect as an sk ¼ þ1
long trailing wave. Examples of nodal wave reflection and
stalling are also given below.

4. THE SECULAR EVOLUTION OF THE PRIMORDIAL
KUIPER BELT

Using the recipe given in x 2.1.1, the rings model is used
to compute the secular evolution of the primordial Kuiper
Belt as it is perturbed by the four giant planets. In these

No. 1, 2003 SECULAR EVOLUTION OF PRIMORDIAL KUIPER BELT 539



simulations the giant planets are represented by thin h ¼ 0
rings whose initial orbits are their current orbits, while the
Kuiper Belt is represented by 500 rings whose semimajor
axes extend from 36 AU out to 50–70 AU. The location of
the belt’s inner edge is chosen such that only the outermost
radial and vertical secular resonances, the �8 and the �18,
reside in this disk near 40 AU when of low mass. The semi-
major axes of each belt ring increases as ajþ1 ¼ ð1þ �Þaj
where the rings’ fractional separation � is typically �0.001.
The rings’ fractional half-thickness h is always in excess of
2�, as is required to get the correct apse precession in an axi-
symmetric disk (see x 2.2.3). The belt rings’ initial eccentric-
ities and inclinations are zero, with all inclinations being
measured with respect to the system’s invariable plane. The
mass of each ring is chosen such that the belt’s surface den-
sity �ðaÞ varies as a�1:5. For this configuration, if the total
Kuiper Belt mass over the 36 AU � a � 70 AU zone is
Mtotal, then the total mass in the ‘‘ observable ’’ 30 AU �
a � 50 AU zone that is currently accessible to astronomers
would be MKB ¼ 0:67Mtotal had the above surface density
law extended inward to 30 AU. For these systems the
normalized disk mass is ld ’ MKB=M	.

4.1. AMKB ¼ 10M� Example

Figure 3 shows a snapshot of apsidal density waves as
they propagate across anMKB ¼ 10M� Kuiper Belt having
a half-thickness h ¼ 5� ¼ 0:0067. Since h � 0:2hQ, the nec-
essary disk conditions for the propagation of apsidal and
nodal waves are well satisfied. Initially, a long trailing den-
sity wave is launched at the belt’s inner edge. This wave is
really more like a pulse �5 AU wide, and Figure 3 shows
that by time t ¼ 2� 106 yr the wave has just started to
reflect at the disk’s outer edge at 70 AU. The gray-scale map
of the disk’s surface density variation, D�=�, is obtained
using equation (39), and this map also provides a historical
record of this system’s wave action. It should be noted
that equation (39) is quantitatively correct only when
jD�=�j5 1, a condition that is rarely satisfied by the results
obtained here. Nonetheless, equation (39) is still useful in a
qualitative sense since it will indicate the disk regions where
large surface density variations as well as orbit crossing can
be expected. As the outer edge of the D�=� map shows, the
main apsidal density wave pulse at 67 < a < 70 AU has just
reflected at a short trailing wave, and this nonlinear wave,
having jD�=�j > 1, will completely dominate the disk’s
appearance at later times as it propagates inward. But until
this happens, the bulk of the disk’s appearance over
45 < a < 67 AU is still dominated by lower amplitude long
waves that are following behind the main density pulse.
Note also that short leading waves were also emitted at the
disk’s inner edge, but as the density gray scale shows, they
have only propagated out to a ¼ 45 AU thus far owing to
their slower group velocity (see eq. [38]). These short waves
are well resolved in the sense that their radial wavelength of
�S � 1 AU spans about 15 disk rings. Although these short
waves are seen in the eðaÞ and ~!!ðaÞ plots as only tiny wiggles
over 36 AU < a < 45 AU that are superimposed on top of
the disk’s longer wavelength behavior, the density gray scale
shows that the short waves dominate the inner disk’s
appearance. The electronic edition of Figure 3 is also linked
to an animated sequence of these figures that give the sys-
tem’s complete time history. That animation shows that
by time t ’ 1� 107 yr, nonlinear short waves will have

swept across the entire disk, and they result in large surface
density variations jD�=�j > 1 over radial wavelengths of
�S � 1 AU.

Figure 3 also shows that by time t ¼ 2� 106 yr, a long
leading nodal bending wave pulse has already propagated
across the disk, where it has reflected at the disk’s outer edge
and just started to return inward as a long trailing bending
wave. But when that pulse reaches the disk’s inner edge, a
portion of the wave’s angular momentum content will con-
tinue to propagate farther inward, where it will give a small
kick to the giant planets’ orbit elements, while the remaining
wave pulse reflects again and propagates outward. The same
phenomenon also occurs among the apsidal density waves.
Thus, after a few reflections, a single wave pulse will lose its
initial spatial coherence by spawning multiple wave trains
that, in this friction-free model, forever roam about the belt.
This ultimately results in a rather wobbly-looking standing
density wave pattern that varies over the short-wavelength
scale �S � 1 AU, as well as a standing bending wave pattern
that varies over a much longer scale �L � 40 AU.

A dynamical ‘‘ spectrum ’’ of this Kuiper Belt is shown in
Figure 4, which plots all of the eccentricity eigenvector ele-
ments jEjij for each of the disk rings versus their eigenfre-
quency gi, as well as inclination eigenvector elements jIjij
versus eigenfrequency j fij. The upper figure is quite reminis-
cent of the findings of Tremaine (2001), who showed that a
gravitating disk tends to exhibit its strongest response to
slow radial perturbations via modes having discrete patterns
speeds ! that can be identified with any of the peak fre-
quencies gi seen in Figure 4. Figures such as these are quite
useful for identifying the patterns speeds ! that are associ-
ated with the density and bending waves that propagate in
the disk.

4.2. Variations with Kuiper Belt MassMKB

Simulations have been performed with Kuiper Belts hav-
ing masses MKB ¼ 0, 0.08, 0.2, 2, 10, and 30 M� in the
observable 30 AU � a � 50 AU zone [again, this would be
the belt’s mass assuming its surface density �ðaÞ / a�1:5

were to extend solely over that region]. The results are sum-
marized in Figure 1, which shows the maximum eccentric-
ities emax and maximum inclinations imax achieved by the
rings in each simulation. The belt’s radial width is indicated
by the breadth of the curves in Figure 1, which ranges
from 34 AU in the higher mass belts to 14 AU for the
MKB ¼ 0:08 M� system. Each simulation uses 500 disk
rings having a fractional half-thickness h ¼ 2�, so the three
higher mass systems have h ¼ 0:0027, while the lower mass
disk MKB ¼ 0:2 M� is somewhat thinner with h ¼ 0:0015,
and the MKB ¼ 0:08 M� system has h ¼ 0:0010. The rings
in these lower mass disks are more closely packed, so that
their shorter wavelength density waves are well resolved,
and they are also made thinner so as to push theirQ barriers
a bit further downstream. The disk’s initial orbits are
e ¼ 0 ¼ i, except for the MKB ¼ 0 system, which instead
adopts the forced orbit elements appropriate for a massless
disk (e.g., Brouwer & Clemence 1961; Murray & Dermott
1999). These systems are evolved until their initial density
and bending wave pulses have had the opportunity to reflect
multiple times and have largely dissolved into standing
wave patterns. The lower mass disks necessarily have longer
run times because of their waves’ slower propagation speeds
(see eq. [38]); these run times are 1� 109, 2� 109, 1� 108,
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Fig. 3.—Snapshot of the simulated Kuiper Belt’s orbit elements ðe; i; ~!!;�Þ plotted vs. semimajor axis a at time t ¼ 2� 106 yr in aMKB ¼ 10M� belt. The
belt’s fractional half-thickness is h ¼ 0:0067. The dots along the left axes indicate Neptune’s orbit elements. The D�=� gray scale shows the disk’s fractional
surface density variations vs. the polar coordinates ða; �Þ, estimated via eq. (39). White/black zones indicate over/underdense regions where jD�=�j exceeds
0.63, while white/black zones in the other gray scale indicate the disk’s latitude � ¼ z=a above/below the invariable plane, with saturation occurring wherever
j�j exceeds 0=86. This figure is also available as an mpeg animation in the electronic edition of the Astrophysical Journal.



2� 107, and 1� 107 yr for the MKB ¼ 0:08, 0.2, 2, 10, and
30 M� systems, respectively. Once the standing wave pat-
tern has emerged, the rings’ instantaneous eccentricities and
inclinations range over 0de < emax and 0di < imax.

As Figure 1 shows, there are no peaks in the emax and imax

curves for the higher mass disks having MKB 
 2 M�, indi-
cating that there are no secular resonances in the disk itself;
any such resonances likely lie between the orbits of Neptune

Fig. 4.—Numerous small dots show the individual elements in the disk rings’ eccentricity eigenvectors jEjij, all plotted vs. their eigenfrequencies gi, as well
as the disk rings inclination eigenvector elements jIjij vs. jfij, for the system shown in Fig. 3. The solid curves are jEjij and jIjij averaged over semimajor axes
45 AU � aj � 55AU. The upper horizontal axes are the corresponding precession periods 2�=gi and 2�=jfi j. The large filled circles indicate the eigenfrequency
and eigenvector element that dominates the motion of each giant planet: J = Jupiter, S = Saturn, U=Uranus, andN=Neptune.
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and the disk’s inner edge at 36 AU. The simulations of these
higher mass disks show long trailing density waves and long
leading bending waves being launched at the disk’s inner
edge. These waves sweep across the disk, reflect at the disk’s
outer edge, and return as short trailing density waves and
long trailing bending waves, similar to the history described
in x 4.1 and seen in Figure 3.

However, secular resonances at a ’ 41 AU are quite
prominent in the lower mass disks having MKB ¼ 0:08 and
0.2M�. These are sites that launch long density and bending
waves, and as Figure 1 shows, the density waves are able to
propagate out as far as a ¼ 45 and 49 AU, respectively,
where they are reflected by a Q barrier and return as short
density waves. These reflection sites occur where h ’ 2:2hQ
and h ’ 1:4hQ, which shows that equation (37) is an approx-
imate yet useful indicator of where apsidal waves are
allowed to propagate. Note also the large amplitudes of the
density waves in these low-mass disks, 0:3demaxd1, which
clearly violates the model’s assumption of low eccentricities.
Thus, these particular curves should not be taken at face
value. Nonetheless, they do indicate that apsidal waves in a
low-mass Kuiper Belt may result in large eccentricities, and
Figure 1 shows that sizable inclinations can also result
from nodal bending waves. Indeed, in the MKB ¼ 0:08 M�
disk, maximum inclinations are typically i � 20�, which is
comparable to theMain Belt’s high-inclination component.

The larger e and i seen in the lower mass disks are a conse-
quence of the giant planets transmitting a small fraction of
their initial angular momentum deficit5 (AMD) into the disk
in each simulation. In each simulation, the giant planets
deposit �0:005Le and �0:1Li into the disk’s inner edge,
which waves then transport and smear out across a vast
swath of the Kuiper Belt. Since the AMD deposited in the
disk is roughly constant in each simulation, the lower mass
disks exhibit larger e and i excitations. It should also be
noted that computational limitations in dynamical studies
of the Kuiper Belt, particularly N-body simulations, often
require treating the belt as a swarm ofmassless test particles.
However, the comparison of the MKB ¼ 0 curve to the
MKB > 0 curves in Figure 1 shows that the end state of a
Kuiper Belt having even just a modest amount of mass can
be radically different from one naively treated as massless.

4.3. Variations with Disk Thickness

Figure 5 shows how the response of anMKB ¼ 10M� belt
varies with increasing disk thickness h ¼ ð2; 20; 30; 60;
100Þ� ¼ ð0:0027, 0.027, 0.04, 0.08, 0.13). According to equa-
tion (37), hQðaÞ / a1=2�r¼�1 in these r ¼ 3=2 disks, so the Q
barrier will move inward as the disk’s h is increased, as is evi-
dent in Figure 5. All of these disks have a normalized disk
mass ld ’ 3� 10�5, a mean motion n ’ 0:02 rad yr�1, and
a pattern speed that is typically ! � 3� 10�6 rad yr�1, so
wave action is shut off when the disk thickness h exceeds
hQ ¼ 0:26ld jn=!j � 0:05. In the thinnest disk with h ¼
0:0027, the Q barrier lies beyond the disk’s outer edge at 70
AU, so long and then short apsidal density waves are able to
slosh about the disk’s full extent. However, theQ barrier lies
in the disk at a ’ 60 AU when h ¼ 0:027 (Fig. 5, red curve),
at a ’ 53 AU when h ¼ 0:04 (green curve), and apsidal
waves are prohibited in the disks with h 
 0:08 (blue and
purple curves).

Figure 5 also shows that the nodal bending waves are shut
off when the disk thickness h exceeds the somewhat more
relaxed criterion 2:72hQ � 0:14. Note also the peak at a ’
53 AU in the h ¼ 0:027 disk (red curve) and at a ’ 39 AU in
the h ¼ 0:04 disk (green curve). These particular disks admit
two spiral patterns, a higher amplitude spiral that corotates
with Neptune’s dominant eigenmode at the pattern speed of
! � �3� 10�6 rad yr�1, and a lower amplitude mode that
corotates with Uranus at the faster rate ! � �1:5� 10�5

rad yr�1. Since hQ / j!j�1, the faster spiral pattern has
2:72hQ � 0:03, which is why this wave stalls at a ¼ 53ð39Þ
AU in the h ¼ 0:027ð0:04Þ disks, while the slower spiral
mode is able to propagate the full breadth of these disks.

The behavior of a lower mass disk withMKB ¼ 0:2M� is
shown in Figure 6 for disks having h ¼ ð2; 5; 10; 15Þ� ¼
ð0:0015, 0.0037, 0.0074, 0.011). A pair of secular resonances
lie near a ’ 40 AU, and they launch apsidal and nodal
waves having pattern speeds ! � �3� 10�6 rad yr�1. These
disks have ld ’ 6� 10�7 and hQ � 0:001, and as the upper
plot shows, further increases in h bring theQ barrier inward
until the wave-propagation zone has shrunk down to zero.
The lower plot also shows that nodal waves forever slosh
about the model Kuiper Belt in the h ¼ 0:0015 disk (orange
curve), whereas the peaks in the other curves show that these
waves stall at sites ever closer to resonance in progressively
thicker disks. These figures also show that when h4hQ, the
motions of a nongravitating disk are recovered, namely,
the disk’s maximum e and i are twice the forced motions
seen in theMKB ¼ 0 disk (black curves), with the factor of 2
being a consequence of these disks’ initial conditions
e ¼ 0 ¼ i.

4.4. Implications for the Primordial Kuiper Belt

The primordial Kuiper Belt likely had an initial mass of
MKB � 30M� (see x 1), and accretion models show that the
initial KBO swarm must have had dispersion velocities less
than �0.001 Keplerian (Kenyon & Luu 1999), so hd0:001,
ld � 1� 10�4, and thus hQ � 0:2, assuming the spiral waves
have pattern speeds of j!j � 3� 10�6 rad yr�1. Since h <
hQ, the primordial Kuiper Belt readily sustained apsidal and
nodal waves. Figure 1 shows that in this high-mass environ-
ment, these will be rather low amplitude waves having
e � sin i � 0:01. These waves will quickly propagate across
a Kuiper Belt of width Da in time Tprop � Da=jcgj ’ Da=
ldan, so the wave propagation time is

Tprop � 3� 105
MKB

30 M�

� ��1
Da

30 AU

� �
yr : ð46Þ

In the friction-free model employed here, the outward-
bound long density waves eventually reflect, either at a Q
barrier in the disk (which might lie downstream where
h ¼ hQ) or else at the disk’s outer edge. The reflected waves
then propagate inward as short density waves, and such
waves are nonlinear in the sense that their surface density
variations D�=� typically exceed unity. Figure 3 shows a
snapshot of long and short density waves in a MKB ¼ 10
M� disk. Note that the long waves completely dominate the
disk’s orbit elements eðaÞ and ~!!ðaÞ that vary over a wave-
length of �L � 10 AU, while the short waves are the tiny
variations in eðaÞ and ~!!ðaÞ that occur over a �S � 1 AU
scale at the disk’s inner and outer edge. Even though the
short waves are almost imperceptible in the orbit-elements
plots, the gray-scale map shows that these nonlinear5 For example, theLe andLi of eq. (26).

No. 1, 2003 SECULAR EVOLUTION OF PRIMORDIAL KUIPER BELT 543



short waves completely dominate the disk’s surface density
structure.

Figure 1 also shows that the waves in lower mass systems
have higher amplitudes. This suggests that wave action may
tend to drive disk-planet systems toward an equipartition of
angular momentum deficits, since the angular momentum

content of the waves seen in all simulations is �0.5% and
�10% of the planets’ Le andLi, respectively.

The large-amplitude waves seen in the MKB ¼ 0:2 M�
disk also suggest that apsidal and nodal wave action might
account for much of the Kuiper Belt’s excited state (see Fig.
1). However, the viability of this scenario depends critically

Fig. 5.—Maximum eccentricities and inclinations in a MKB ¼ 10 M� disk having a fractional thickness h ¼ 0:0027, 0.027, 0.04, 0. 08, and 0.13. The black
curves are the forced e and i that occur in a massless disk. The characteristic particles size corresponding to each disk thickness h can be obtained by setting
particle dispersion velocities equal to their surface escape velocity, which corresponds to particle radii of R � 5000h km � 14; 140; 200; 400, and 650 km,
respectively.
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Fig. 6.—Top: Maximum eccentricities, emax, in a MKB ¼ 0:2 M� disk having thicknesses h ¼ 0:0015, 0.0037, 0.0074, and 0.011. Bottom: Average inclina-
tions i that occur after the bending wave has stalled. The exception is the orange h ¼ 0:0015 curve; this wave does not stall, so this curve shows the maximum
inclination, imax. The black curves are the forced e and i that occur in a massless disk.



on the timescales that govern the belt’s mass loss as well as
the KBOs’ velocity evolution. First note that accretion
models show that as soon as the large Re100 km KBOs
form, further KBO growth is halted as they initiate an epi-
sode of more vigorous collisions that steadily grind the
belt’s smaller members down to dust, which radiation forces
then transport away (Kenyon & Luu 1999; Kenyon &
Bromley 2001). Accretion models show that the R � 100
kmKBOs form at a � 35 AU over a �form � 1� 107 yr time-
scale, and that the belt’s subsequent collisional erosion
occurs over a �erode � 5� 108 yr timescale (Kenyon & Luu
1999; Kenyon & Bromley 2001). If Neptune’s orbit had
migrated substantially, the advancing 2 : 1 resonance would
also have swept across the Main Belt, which further enhan-
ces the stirring as well the collisional/dynamical erosion.
The resulting grinding and erosion thus makes it ever more
difficult for the belt to sustain waves as the initially massive
Kuiper Belt mass is eroded by a factor of �150, which also
lowers the disk’s hQ !� 10�3. Note that the removal of the
smaller KBOs also turns off the dynamical friction that once
kept the particle disk quite thin. The gravitational stirring
by the surviving larger KBOs is then free to raise their dis-
persion velocities c up to their surface escape velocity vesc
(Safronov 1972), which results in a thicker disk with
h � vesc=na � 0:02ðR=100 kmÞ, where R is the KBOs’ char-
acteristic size. Since this is substantially larger than the cur-
rent belt’s hQ, it seems quite likely that this stirring shut off
the waves while they were still of low amplitude (see Fig. 1),
long before the Kuiper Belt was ground down to its present
mass.6 Consequently, apsidal and nodal waves were likely
able to propagate throughout the Kuiper Belt during a time-
scale �wave that is bounded by the moment when the large
KBOs first formed and when the belt eroded away, i.e.,
�form < �wave < �erode.

4.5. Comments on Studies of Spiral Waves in Galactic Disks

It should also be noted that this implementation of the
rings model does not account for any viscous damping of
spiral waves which, as Hunter & Toomre (1969) point out,
may be more important as bending waves approach a disk’s
outer edge. Unlike the sharp-edged disks employed here, a
more realistic disk likely has a ‘‘ fuzzy ’’ edge where the
disk’s surface density gently tapers to zero. Hunter &
Toomre (1969) show that bending waves entering such a
lower density zone tend to excite substantially larger inclina-
tions there, and such sites will be considerably more suscep-
tible to the viscous dissipation of these possibly nonlinear
waves.

Toomre (1983) suggests that disks having a tapered edge
might also cause bending waves to stall there, since the
group velocity cg ! 0 as the surface density � smoothly goes
to zero. However, this assertion was not confirmed by the
rings model, which tapered a disk’s outer surface density by
multiplying it by the factor ½1� ðl � DaÞ2=l2�1=2, where Da is
the distance from the outer edge and l is the tapering scale
length. These experiments adopt values of l that are smaller

than, comparable to, and larger than the bending wave-
length �L, and in all cases the bending wave reflects at or
near the disk edge, with considerably larger inclinations
being excited in this tapered zone.

5. SUMMARY

A model that rapidly computes the secular evolution of a
gravitating disk-planet system is developed. The disk is
treated as a nested set of rings, with the rings’/planets’ time
evolution being governed by the Lagrange planetary equa-
tions. It is shown that the solution to the dynamical equa-
tions is a modified version of the classical Laplace-Lagrange
solution for the secular evolution of the planets (Brouwer &
Clemence 1961; Murray & Dermott 1999), with the modifi-
cation being due to a ring’s finite thickness h ¼ c=n that is a
consequence of the dispersion velocity c of that ring’s con-
stituent particles. Since the ring’s finite thickness h softens
its gravitational potential, this also softens the Laplace coef-
ficients appearing in the Laplace-Lagrange solution over a
scale h=a.

It is shown that the Lagrange planetary equations admit
spiral wave solutions when the tight-winding approxima-
tion is applied. There are two types of spiral density (or apsi-
dal) waves, long waves of wavelength �L ¼ 2�ld jn=!ja and
short waves of wavelength �S < 2

ffiffiffi
2

p
�ha, where h ¼ h=a is

the disk’s fractional thickness and ! is the angular rate at
which the spiral pattern rotates. The simulations presented
here show that the giant planets launch long waves either at
a resonance in the disk or at the disk’s nearest edge, and that
these waves propagate away until they reflect at the disk’s
far edge or else at a Q barrier in the disk, which resides
where h ¼ hQðaÞ, where hQðaÞ ¼ 0:26ld jn=!j is the maxi-
mum disk thickness that can sustain apsidal waves, with
ld ¼ ��a2=M	 being the normalized disk mass. Of course,
all of these findings can be derived from the stellar disper-
sion relation given in Toomre (1969) in the limit that the
pattern speed ! is much smaller than the disk’s meanmotion
n. Nonetheless, it is satisfying to see that the theory of
unforced apsidal waves is readily obtained from the
Lagrange planetary equations; with a little more effort the
theory for forced apsidal waves (e.g., Ward & Hahn 1998a)
should also be recoverable.

However, new results are obtained for the nodal wave
problem, which admits only a long-wavelength solution �L

to the planetary equations in the tight-winding limit. In par-
ticular, it is shown that these waves can stall, that is, the
waves’ group velocity plummets to zero as they approach a
site in the disk where h ¼ 2:72hQ. If, however, these waves
instead encounter a disk edge, they will reflect and return as
long waves. In the limit that h ! 0, the results for nodal
waves propagating in a infinitesimally thin disk is recovered
(Ward & Hahn 2003), but note that the wave-stalling
phenomenon does not appear in a h ¼ 0 treatment of the
disk.

The rings model is also used to examine the propagation
of apsidal and nodal waves that are launched by the giant
planets into a variety of Kuiper Belts having a mass
MKB ¼ 30 M� (the estimated primordial mass) down to
MKB ¼ 0:08 M� (which is �40% of the belt’s current mass
estimate). In each simulation the giant planets deposit
roughly the same fraction of their initial angular momen-
tum deficits, �0.5% and �10% of the planets’ Le and Li,
respectively, into the disk in the form of spiral waves. And

6 An exception to this assertion might occur if the reflection of nodal
waves at an outer edge allowed the belt to behave as a resonant cavity
(Ward 2003). When the disk’s mass and the wave’s pattern speed are appro-
priately tuned, which can occur naturally as the belt eroded and/or as Nep-
tune’s precession rate varied due to its orbital migration, then a higher
amplitude standing wave pattern can result while the belt persists in the
tuned state.

546 HAHN Vol. 595



since the waves’ angular momentum content is roughly the
same in each simulation, the lower mass Kuiper Belts thus
experience higher amplitude waves. Indeed, the waves seen
in theMKB � 0:2M� simulations are of sufficient amplitude
that they could in principle account for much of the dynami-
cal excitation that is observed in the Kuiper Belt. However,
wave action in a MKB � 0:2 M� belt also requires its frac-
tional scale height to be quite thin, namely, hd10�3. Most
likely, apsidal and nodal waves were shut off, due to self-stir-
ring by large KBOs as well as by other external perturba-
tions, long before the belt eroded down to its current mass,
in which case the excitation by wave action would have been
quite modest.

The rings model developed here has many other applica-
tions. One issue of great interest is to determine whether
apsidal and nodal waves may be propagating in Saturn’s
rings. Of particular interest are the short apsidal waves,
since their detection could yield the ring’s dispersion veloc-
ity c via a measurement of the short wavelength �S � 9c=n.
Although the ring particles’ dispersion velocity is of funda-
mental importance to ring dynamics, it is less than well con-

strained at Saturn. Of course, the differential precession due
to planetary oblateness also needs to be included in the
model (e.g., Murray & Dermott 1999), since this effect may
actually defeat this form of wave action. The rings model
can also be used to examine the forced motions of a rela-
tively massless but much thicker circumstellar dust disk like
� Pictoris. The warps and brightness asymmetries seen in
this system are usually attributed to secular perturbations
exerted by an unseen planetary system, and the code devel-
oped here can be used to very rapidly explore the wide range
of planetary parameters. This rings model will be used to
study these and other problems in greater detail in the near
future.
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APPENDIX A

Differentiating the ~bb
ðmÞ
s appearing in the f and g functions (eqs. [17]) yields

f ¼ 2�~bb
ð1Þ
3=2 þ

3
2�

2 ~bb
ð2Þ
5=2 � ~bb

ð0Þ
5=2

� �
� 3�2H2ð2þH2Þ~bbð0Þ5=2 ; ðA1aÞ

g ¼ 2ð�2 þ 1Þð1þH2Þ~bbð1Þ3=2 � 3� ~bb
ð0Þ
3=2 þ ~bb

ð2Þ
3=2

� �
þ 3�2H2ð2þH2Þ~bbð1Þ5=2 �

3
4�

2 ~bb
ð3Þ
5=2 � ~bb

ð1Þ
5=2

� �
; ðA1bÞ

whereH2 ¼ 1
2 ðh

2 þ h02Þ. The recursion relations

m~bb
ðmÞ
s ¼ s� ~bb

ðm�1Þ
sþ1 � ~bb

ðmþ1Þ
sþ1

� �
; ðA2aÞ

ðmþ 1� sÞ�~bbðmþ1Þ
s ¼ mð1þ �2Þð1þH2Þ~bbðmÞ

s � ðmþ s� 1Þ�~bbðm�1Þ
s ; ðA2bÞ

can be used to simplify equations (A1) further. Equations (A2) are derived in Brouwer & Clemence (1961) for the case where
H ¼ 0. However, the more general relations given above are readily obtained by replacing the combination 1þ �2 appearing
in the Brouwer & Clemence (1961) recursion relations with ð1þ �2Þð1þH2Þ. So form ¼ 1 and s ¼ 3=2, equation (A2a) is

~bb
ð1Þ
3=2 ¼

3
2�

~bb
ð0Þ
5=2 � ~bb

ð2Þ
5=2

� �
ðA3Þ

and

~bb
ð2Þ
3=2 ¼

3
4�

~bb
ð1Þ
5=2 � ~bb

ð3Þ
5=2

� �
ðA4Þ

form ¼ 2 and s ¼ 3=2, while equation (A2b) yields

2ð�2 þ 1Þð1þH2Þ~bbð1Þ3=2 ¼ �~bb
ð2Þ
3=2 þ 3�~bb

ð0Þ
3=2 ðA5Þ

form ¼ 1 and s ¼ 3=2. Inserting equations (A3)–(A5) into (A1) then yields

f ð�; h; h0Þ ¼ �~bb
ð1Þ
3=2 � 3�2H2ð2þH2Þ~bbð0Þ5=2 ; ðA6aÞ

gð�; h; h0Þ ¼ ��~bb
ð2Þ
3=2 þ 3�2H2ð2þH2Þ~bbð1Þ5=2 : ðA6bÞ

APPENDIX B

The symbolic mathematics software MAPLE has been used to write the needed softened Laplace coefficients ~bb
ðmÞ
s

(eq. [12]), in terms of complete elliptic integrals K and E. Setting H2 ¼ 1
2 ðh

2 þ h02Þ, 
 ¼ ð1þ �2Þð1þH2Þ=2�, and
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 ¼ ½2=ð
 þ 1Þ�1=2, then

~bb
ð0Þ
1=2ð�; h; h

0Þ ¼ 4KðÞ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ð
 þ 1Þ

p ðB1aÞ
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ð
 þ 1Þ

p ðB1dÞ

~bb
ð2Þ
3=2ð�; h; h

0Þ ¼ 2 �4
ð
 � 1ÞKðÞ þ ð4
2 � 3ÞEðÞ½ �
��ð
 � 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ð
 þ 1Þ

p ðB1eÞ

~bb
ð0Þ
5=2ð�; h; h

0Þ ¼ 4 �ð
 � 1ÞKðÞ þ 4
EðÞ½ �
3�ð2�Þ5=2ð
 þ 1Þ3=2ð
 � 1Þ2

ðB1fÞ

~bb
ð1Þ
5=2ð�; h; h

0Þ ¼ 4 �
ð
 � 1ÞKðÞ þ ð
2 þ 3ÞEðÞ½ �
3�ð2�Þ5=2ð
 þ 1Þ3=2ð
 � 1Þ2

; ðB1gÞ

where

KðÞ ¼
Z 1

0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� t2Þð1� 2t2

p ðB2Þ

is the complete elliptic integral of the first kind, and

EðÞ ¼
Z 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2t2

1� t2

r
dt ðB3Þ

is the complete elliptic integral of the second kind. The series expansions for KðÞ and EðÞ given in Abramowitz & Stegun
(1970) then permit the rapid calculation of the softened Laplace coefficients ~bb

ðmÞ
s without requiring a numerical integration of

equation (12). However, equation (B1) can give unreliable results for extreme values of � because of numerical roundoff errors.
In this case it is preferable to factor the ð1þ �2Þð1þH2Þ ¼ 2�
 term out of the integrand in equation (12) and expand the
denominator for the case of large 
41:

~bb
ðmÞ
s ¼ 2

�ð2�
Þs
Z �

0

d� cosðm�Þ 1þ s



cos�þ sðsþ 1Þ

2
2
cos 2�þ . . .

	 

ðB4aÞ

’ fm�m

ð2�
Þsþm ; ðB4bÞ

where f0 ¼ 2, f1 ¼ 2s, and f2 ¼ sðsþ 1Þ. Equation (B4b) usually gives the more reliable result for �5 0:01 and for �4100.
Another useful form for ~bb

ðmÞ
s is obtained for regions where � ¼ 1þ x where jxj5 1. In this ‘‘ local ’’ approximation, the

dominant contribution to the integral (eq. [12]), occurs where �5 1. Thus, we can set cos� ’ 1� �2=2 and � ’ 1 except where
it appears as �� 1 ¼ x, extend the upper integration limit to infinity, and set cosðm�Þ ’ 1 in the numerator (e.g., Goldreich &
Tremaine 1980):

~bb
ðmÞ
s ðxÞ ’ 2

�

Z 1

0

d�

ðx2 þ 2H2 þ �2Þs ¼

2=�

x2 þ 2H2
for s ¼ 3=2 ;

4=3�

ðx2 þ 2H2Þ2
for s ¼ 5=2 :

8>><
>>: ðB5Þ

APPENDIX C

The time derivative of Le (eq. [26a]) is

dLe

dt
¼

X
j

mjnja
2
j hj

dhj
dt

þ kj
dkj
dt

� �
ðC1aÞ

¼
X
j

X
k 6¼j

mjn
2
j a

2
j Ajkðhjkk � hkkjÞ ðC1bÞ

¼
X
j

X
k 6¼j

1

4

mjmk

M	 þmj

� �
n2j a

2
j gjkðhjkk � hkkjÞ ; ðC1cÞ
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where gjk ¼ gð�jk; hj ; hkÞ. Let dLe=dt ¼ S1 � S2, where S1 is the sum over the hjkk terms and S2 is the sum over the hkkj. Swap
the j and k indices in S2 so that it becomes

S2 ¼
X
k

X
j 6¼k

1

4

mkmj

M	 þmk

� �
n2ka

2
kgkjhjkk : ðC2Þ

Equation (18c) shows that gkj ¼ �jkgjk, and with ðnk=njÞ2 ¼ ��3
jk ðM	 þmkÞ=ðM	 þmjÞ, S2 becomes

S2 ¼
X
k

X
j 6¼k

1

4

mjmk

M	 þmj

� �
n2j a

2
j gjkhjkk ; ðC3Þ

which is S1 since the sums obey
P

k

P
j 6¼k ¼

P
j

P
k 6¼j. Consequently, dLe=dt ¼ S1 � S2 ¼ 0, and a similar analysis will also

show that dLi=dt ¼ 0.
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