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ABSTRACT
The role of apsidal density waves propagating in a primordial trans-Neptune disk (i.e., Kuiper belt) is

investigated. It is shown that Neptune launches apsidal waves at its secular resonance near 40 AU that
propagate radially outward, deeper into the particle disk. The wavelength of apsidal waves is consider-
ably longer than waves that might be launched at Lindblad resonances, because the pattern speed, g

s
,

resulting from the apsis precesssion of Neptune is much slower than its mean motion, If the early)
s
.

Kuiper belt had a sufficient surface density, p, the diskÏs wave response to NeptuneÏs secular perturbation
would have spread the disturbing torque radially over a collective scale wherej

*
B r(2k

d
)/o r dg/dr o)1@2,

and )(r) and g(r) are respectively the mean motion and precession frequency of thek
d
4 npr2/(1 M

_
)

disk particles. This results in considerably smaller eccentricities at resonance than had the disk particles
been treated as noninteracting test particles. Consequently, particles are less apt to be excited into
planet-crossing orbits, implying that the erosion timescales reported by earlier test-particle simulations of
the Kuiper belt may be underestimated. It is also shown that the torque the disk exerts upon the planet
(due to its gravitational attraction for the diskÏs spiral wave pattern) damps the planetÏs eccentricity and
further inhibits the planetÏs ability to erode the disk.
Key words : celestial mechanics, stellar dynamics È comets : general È minor planets, asteroids

1. INTRODUCTION

In the past few years, the nature and dynamics of the
Kuiper belt have been a subject of considerable attention.
Interest was sparked by the demonstration by Duncan,
Quinn, & Tremaine that a trans-Neptune disk could(1988)
provide a plausible source for short-period comets. The dis-
covery of the Ðrst Kuiper belt object, 1992 by &QB1, Jewitt
Luu further accelerated e†orts of both observers and(1992)
modelers. Great advances in both machine capability and
computing techniques led to a series of increasingly inten-
sive numerical experiments on the dynamics of test particles
in the Kuiper belt region, e.g., &Torbett (1989), Gladman
Duncan & Wisdom &(1990), Holman (1993), Levison
Duncan and Levison, & Budd These(1993), Duncan, (1995).
experiments made it clear that both secular and mean
motion resonances play a major role in shaping the evolu-
tion of the Kuiper belt. Analytic treatments of Kuiper belt
resonant dynamics have been provided by Morbidelli,
Thomas, & Moons and(1995) Malhotra (1995, 1996).

To date, observations have yielded some 55 trans-
Neptune bodies like 1992 Based on the size of the skyQB1.area searched, estimates of the total population of such
objects within 10¡ of the ecliptic and larger than 100 km are
on the order of a few times 104. The total mass of the belt
out to D50 AU from objects greater than D1 km in diam-
eter is put at 0.06È0.25 Earth masses (e.g., Luu,(ME) Jewitt,
& Chen However, these objects are far1996 ; Stern 1996a).2

ÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈ
1 Visiting Scientist.
2 The recent discovery of 1996 points to an additional scatteredTL66Kuiper belt component having a mass D0.5 with orbits between D40MEand 200 AU et al.(Luu 1997).

from uniform in their orbital characteristics. Most objects
interior to D40 AU appear to reside in mean motion reso-
nances with Neptune. These resonant orbits may be instru-
mental in preserving their occupants ; it is well known that
Pluto enjoys such protection through its 3 :2 resonance with
Neptune, which prevents close encounters between these
objects. Resonant objects typically have high eccentricities,
which may be evidence of resonance sweeping due to an
outward migration of Neptune (Malhotra 1998).

The formation and possible migration of Neptune
requires a few Neptune masses of material to be scattered
by that planet & Ip suggest-(Ferna� ndez 1983, 1984, 1996),
ing a primordial Kuiper belt considerably in excess of
todayÏs estimates if the belt extended smoothly into that
region as well. Indeed, observations of extrasolar disks, such
as b Pictoris, reveal remnant disks stretching far beyond the
Sun-Neptune distance. In addition, the existence of 100 kmÈ
sized objects such as has been interpreted as evidenceQB1of a much more massive (i.e., 10È50 between 30 and 50MEAU) primordial Kuiper belt. Stern and coworkers (Stern

& Colwell have pointed out1995, 1996a, 1996b ; Stern 1996)
that accretion in the current environment would not be
possible, because of (1) high relative velocities, which are
erosive, and (2) long collision timescales due to low number
density. They argue that a much more massive and quies-
cent disk was needed in the past to account for the accretion
of the largest objects so far observed. They postulate that
this more massive disk may still exist beyond the gravita-
tional inÑuence of the giant planets, i.e., AU, and thatr Z 50
the low-density region between there and Neptune may be
highly depleted as a result of planetary perturbations. The
current Ñux of short-period comets, which are suggested to
originate from chaotic layers bounding low-order mean
motion resonances (e.g., may be theMalhotra 1996),
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present-day manifestation of this erosion process. Numeri-
cal experiments show that many test particles achieve
Neptune-crossing status within 1 Gyr & Duncan(Levison

et al. due to the action of secular and1993 ; Duncan 1995)
mean motion resonances. These results are reminiscent of
studies of the stability of test particles between the major
planets (e.g., Lecar, & Soper et al.Franklin, 1989 ; Duncan

Kaula, & Newman &1988 ; Weibel, 1990 ; Gladman
Duncan Franklin, & Lecar &1990 ; Soper, 1990 ; Holman
Wisdom et al.1993 ; Grazier 1997).

It is very tempting to extend the numerical and analytic
studies of test-particle behavior that have proved so valu-
able in explaining many of the emerging characteristics of
the Kuiper belt to earlier epochs, when the belt was presu-
medly more massive. However, some caution is in order ;
test-particle integrations are strictly valid only when there
are no interactions with other particles in the disk. And yet
a motivation for postulating a much more massive primor-
dial disk is to speed up accretion rates, i.e., to ensure more
numerous collisions among the swarm. This may be a
source of di†usion that is not included in the numerical
models. Even more important are collective particle behav-
iors. These e†ects are long range and act continuously, not
just during collisions. It is well known that a perturber
orbiting in a Ñuid disk will launch density waves at reso-
nances and that the resulting Ñuid motions are quite unlike
that of an isolated particle subject to the same pertur-
bations. The question is, when is a Ñuid model a more rea-
sonable approximation of a particle disk than the motions
of noninteracting members? In this paper, we explore that
question for the particular case of a secular eccentricity
resonance and show that the necessary conditions for wave
action are easily satisÐed. The resultant disk behavior is
that of a one-armed spiral apsidal wave that propagates
outward into the Kuiper belt. Apsidal waves have pre-
viously been reported in SaturnÏs rings Lissauer, &(Cuzzi,
Shu where the apsidal precession rate of the ring1981),
particles is commensurate with the mean motion of the
satellite Iapetus. However, this is the Ðrst application we are
aware of in which the waves are launched from a true
secular resonance, i.e., where the commensurability is
between the apsidal rates of both perturber and disk par-
ticles. As we shall see, this has important implications for
disk stirring and for the orbit of the perturber launching the
waves.

In we review the behavior of an isolated particle that° 2,
orbits near a secondaryÏs secular resonance and calculate
the particleÏs forced eccentricity as a function of semimajor
axis. In these Ðndings are contrasted with the motions° 3,
that result when the disk has a nonnegligible self-gravity
that allows for the propagation of density waves. Density
wave theory is also used to compute the secondaryÏs orbital
evolution as it reacts to the waves it drives. Results are then
summarized in with a discussion of how these Ðndings° 4
may impact models of the primordial Kuiper belt.

2. TEST-PARTICLE MOTION

We begin by reviewing the behavior of a test particle
orbiting near a secular resonance. Since particle orbits
exterior to Neptune are to be examined, the weaker forcing
terms due to the other planets are omitted. Neptune has a
mass g, a semimajor axis AU,M
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precession rate of the longitude of perihelion du8
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i.e., the frequency, yr~1 of the mode of the solarg8, 0A.673 g8system, with corresponding period yr. ThisPÏ D 1.93] 106
is the dominant term of the secular variation of NeptuneÏs
orbit (see, e.g., et al. et al.Applegate 1986 ; Knez— evic� 1991).
To Ðrst order in and fourth order in e, the particleÏse
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,

eccentricity, the secular perturbation potential due to the
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(e.g., & Clemence where a and ) are respec-Brouwer 1961),
tively the test particleÏs semimajor axis and mean motion, u8
is its longitude of perihelion, k
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10~5, in the Kuiper belt, anda 4 a
s
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are Laplace coefficients. The secondary and particle orbits
are assumed to be coplanar, and the elements subscripted s
refer to the secondary.

Since the pattern speed, is the precession rate, the)ps, g
s
,

Jacobi integral averaged over short-period terms is

J \ E[ )ps L \ [(a))2/2 ] /
s
[ g

s
a2)J1 [ e2 , (3)

where E and L are the speciÐc energy and angular momen-
tum of the particle, respectively. To the same accuracy as

the normalized quantityequation (1), JŒ 4[2J/k
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(a))2,
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A particleÏs semimajor axis does not vary as a result of
secular forcing, so may be used to constructequation (4)
phase-space plots along curves of constant (level curves)JŒ
to show how its eccentricity varies with the resonance angle
r. shows the level curves for when a \Figure 1a JŒ [ D

while displays1.37a
s

(a 4 a
s
/a \ 0.731), Figure 1b JŒ[D

versus e when The extrema, given bysin (u8 [ u8
s
) \ 0.

LJŒ /Le\ 4Ae3] 2Be^ C\ 0 , (6)

are the stationary points in Phase-space trajec-Figure 1a.
tories tend to circle stationary points 1 and 2, while point C
lies on the separatrix. Stationary-point positions are a func-
tion of the particleÏs semimajor axis. The site a where the
particleÏs precession rate, matches theg(a) \ 14k

s
)ab3@2(1) (a),

planetÏs precession rate, is identiÐed as the resonanceg
s
,

location in the lower order theory of &Brouwer Clemence ;
this site will be denoted here as The two branches ofa0.can be computed numerically and are shown inequation (6)

However, simple analytic formulae are obtainedFigure 2.
by expanding about where B\ 0. The coeffi-equation (6) a0cient B can be replaced by DB@*a, where and*a4 a [ a0
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FIG. 1.È(a) level curves for Each curve is a polar plot ofJŒ eq. (4).
eccentricity e vs. resonance angle r for particles having the same semi-
major axis, a \ 0.731, but di†erent values of (i.e., di†erent freeJŒ
eccentricities). This and subsequent Ðgures assume NeptuneÏs mass and
orbit. (b) The solid curve shows vs. e cos r (D is constant) whenJŒ[D
sin r\ 0, and the dotted lines identify the values of for each of theJŒ[D
level curves in (a) ; the lowest dotted line refers to the smallest bean-shaped
orbit in (a) while the upper dotted line is for the outermost orbit.

In this case, A and C can be evaluated at as well witha0little error. The reference value is now found froma0
1
4

a5@2b3@2(1)
K
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\ g

s
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s
)
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\ 1.67 . (8)

The left-hand side can be evaluated numerically from
which reveals that is satisÐed byequation (2), equation (8)

the value This implies that the resonance falls ata0\ 0.770.
AU, which agrees reasonably well with thea

s
/a0\ 39.1

location of the resonance found by et al.g8 Knez— evic� (1991)
when I\ 0.

FIG. 2.ÈParticleÏs forced eccentricity e vs. semimajor axis (note that a
increases to the left). The curve labeled ““ 2 ÏÏ is the numerical solution to eq.

with cos r\ ]1, while the cos r\ [1 solution has an upper (C)(4)
segment and a lower (1) segment. The lower portion of curve 2 left of e'and the lower segment (1) represent the eccentricities that are likely
adopted by a disk of initially cold particles. A Ðlled circle indicates the
maximum eccentricity which occurs a distancee'\ 0.17, *a

*
4[0.01

from the resonance site consistent with the estimates given by eqs.a0, (10)
and Also shown is the e(a) necessary for the perihelion distance,(11).
q \ 35 AU, and the eccentricity from the wave solution for a disk.k

d
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At the ratios are A/B@\ 0.324 and Belowa0, C/A\ 0.455e
s
.

the negative branch gives the eccentricity for point 1 ;e
*
,

above it is e of point C. The positive branch gives thee
*
,

eccentricity for point 2. This application considers a planet
that has recently formed from a cool disk composed of
noninteracting so the particlesÏ forced eccentricitiesbodies,3
will likely lie along the lower portions of the curvesFigure 2
whenever they are multivalued. The resulting maximum e
on the positive branch is The corre-e'\ 2e

*
\ (C/A)1@3.

sponding e-values are

e
*

\ 0.385e
s
1@3 , e'\ 0.769e

s
1@3 . (11)

For our adopted eccentricity these become 0.083(e
s
^ 0.01),

and 0.166, respectively. But, as already mentioned, this
treatment does not consider the additional perturbations
that are also exerted by an ensemble of disk particles. How
the diskÏs self-gravity a†ects the motions of its individual
members is the subject of the remainder of this paper.

ÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈ
3 For now, we assume that their free eccentricities due to gravitational

relaxation of the disk can be neglected.
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3. COLLECTIVE RESPONSE

3.1. Scale L ength
Ward, & hereafter haveHahn, Rettig (1995, HWR)

recently investigated a closely related problem: the e†ects of
collective particle behavior on the trapping strength of mth-
order Lindblad resonances for particles experiencing orbital
decay due to gas drag. They found that the density wave
response of the particle disk, of surface density p, reduces
the trapping strength by redistributing the angular momen-
tum deposited at resonance over a collective scale length.
When compared with particles treated in isolation, this phe-
nomenon causes a strong reduction in the forced eccentric-
ities. This length is roughly the distance, that densityj

*
,

waves can travel from resonance at their group velocity,
during the libration time of the resonance vari-c

g
D nGp/i,

able. The libration frequency is r5 \ o i [ m o)[ )ps o o,where is the pattern speed and i is the local epicyclic)psfrequency of the disk. In terms of the so-called frequency
distance from resonance, D4i2[ m2()[ )ps)2B

the libration frequency is2i(i[ m o) [ )ps o), r5 B
(j/2i) o dD/dr o with an average value equal to half the
maximum. The libration time at distance becomesj

*
qlibB

where the derivative is evaluated at1/Sr5 T B 4i/j
*

o dD/dr o,
D\ 0. Solving self-consistently, the scale length is of order4

j
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K 4nGp
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K1@2
4 r o 2v o1@2 . (12)

The collective behavior smooths out the perturbation, so
that the torque cannot be concentrated on an annulus nar-
rower than j

*
.

argued that there are two necessary conditions forHWR
wave action : (1) there must be multiple particles present
within the collective scale, and (2) their epicyclic radii must
be less than the wavelength. We will tentatively assume that
these conditions are met and check their validity a poste-
riori First, however, the amplitude of the diskÏs(° 3.5).
forced motions will be derived and compared with the iso-
lated particle motions of ° 2.

3.2. Wave Solution for Secular Resonances
A very readable account of the derivation of the Ðrst-

order wave equation for a self-gravitating disk is given by
Following Shu, all perturbed quantities areShu (1984).

assumed to be of the form X ] Xei(ut~mh), where u4m)psis the forcing frequency, and the amplitude, /@, of the disk
potential perturbation in the vicinity of resonance can be
found from

r
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dr
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which is obtained from EulerÏs and PoissonÏs equations
and is valid in the tight-winding limit, o d/@/(Shu 1984)

dr o ? o/@/r o. For apsidal waves m\ 1, and the forcing fre-
quency The m\ 0 potential can be combinedu\)ps4 g
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ÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈ
4 Actually, underestimates the collective scale when becomeseq. (12) j

*so long that dD/dr itself decreases signiÐcantly over that distance.

From & their eq. theGoldreich Tremaine (1980, [5]),5
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has been used. To get the secular terms, which do not
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where g(r)4 )[ i is the apsis precession rate of the disk
particles, with locating the secular resonance wherer0and and where we have introduced theD(r0) \ 0 g \ g
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scale is small compared with both the separation between
resonance and disk edge and the scale over which a linear
expansion, is reasonably good,DB (r [ r0)dD/dr o

r0
, equa-

tion can be written in terms of Fresnel integrals :(19)
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ÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈ
5 Note that ShuÏs sign convention is the reverse of Goldreich & Tre-

maineÏs. We can bring eqs. and into compliance by multiplying the(15) (17)
cosine arguments by [1.

6 It is more convenient to develop the wave formalism in terms of b.
Note, however, that this is the reciprocal of a used in ° 2.
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(see, e.g., whereShu 1984),

q \ sgn
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r0J2 o v o
,
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and is the value of the forcing function at reso-t04 t(b0)nance. If g(r) decreases with heliocentric distance, then q is
positive, and the direction of wave propagation is outward,
i.e., deeper into the Kuiper disk. This is opposite to the
propagation of waves launched from mean motion reso-
nances in this region. The amplitude vanishes asoH

`
(m) o

m ] [O (nonÈwave side), but approaches unity as m ] O
(wave side). The streamlines of the motion are ellipses
whose lines of apsides rotate in a clockwise manner with
increased distance from resonance, thereby generating a
one-arm spiral wave (e.g., Ruden, & ShuAdams, 1989).
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where only m is allowed to vary, all other quantities being
evaluated at resonance. Downstream, andoH

`
o] 1, Figure

shows o/@o as a function of the diskÏs mass. Most of the3
driving occurs during the Ðrst wavelength, which increases

FIG. 3.ÈAbsolute value of the downstream amplitude, o/@ o, of the disk
wave potential normalized to the resonance value of the forcing function,

The dashed curve is the small-t04 t(b0) \ (e
s
/2)b0 b3@2(2) (b0)ks

(a
s
)

s
)2.

wavelength (low disk mass) solution The solid curve shows(eq. [25]). eq.
taking into account variations in the Laplace coefficients, which(26)

become more important as the wavelength increases.

with the square root of the disk mass, resulting in a similar
increase in the amplitude.

At long wavelengths, setting all quantities except m to
their values at resonance becomes more problematic.

can be improved upon by including theEquation (25)
most variable quantities, the Laplace coefficients, b3@2(m) (b),
inside the integrals. If m(b [ 1) > 1, Laplace coefficients
can be approximated by modiÐed Bessel functions :
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The last quantity above can be recognized as an integral
representation of a Hankel function (see, e.g., &Gradshteyn
Ryzhik Numerically, so that at low1965). "\ 1.00(k

s
/k

d
),

disk mass "? 1 and exp i("[ 3n/4).H1(1)(") ] (2/n")1@2
Substitution into recovers pro-equation (26) equation (25),
vided the identiÐcation r dg/dr 4 [2g/(b [ 1) is made,
which is consistent with our approximation of Laplace
coefficients. However, for high-mass disks "> 1 and

and the wave potential increases linearlyH1(1)(")] 2i/n",
with disk mass. is also displayed inEquation (26) Figure 3.
Strictly speaking, even is an approximation,equation (19)
because its derivation ignores other slowly varying terms
that may be signiÐcant at long wavelengths. Nevertheless,
we see that equations and are useful approx-(25) (26)
imations even up to k

d
D k

s
.

Wave driving is mostly limited to the distance over which
the radial wavenumber, k(r) 4 D/2nGp B (g

s
[ g)/k

d
r),

increases rapidly with r. The concomitant shortening of the
wavelength is necessary for a net angular momentum Ñux to
develop. displays wavenumber, k, versus r for threeFigure 4
values of the disk for a power-law disk,mass,7 k

d
(r
s
) 4k

d,s,p P r~n, with n \ 2 including variation of all quantities. In
each case, the most rapid increase in wavenumber occurs
within the Ðrst dr B O(10) AU. The wavelength, j(r)Èas
deÐned by '(r ] j)[ '(r) \ 2n, where the phase '(r) 4
/ k drÈis shown in for the same disk masses as inFigure 5

The curves start at 39.1 AU with the value of theFigure 4.
Ðrst wavelength.

3.3. Resonance Site
The amplitude of the diskÏs wave response is sensitive to

the location of the resonance, which itself can depend upon
the diskÏs potential (e.g., To determine the reso-Ward 1981).
nance site self-consistently, write the precession rate of a test
particleÏs longitude of perihelion as

g \ du8
dt

B
[1
ea2)

L/
T

Le
, (28)

where is the sum of all the con-/
T

4 /
_

] /
s
] /

d
] /@

tributing potentials. The central potential can be/
_

P 1/r
ignored because it cannot produce precession. Using the

ÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈ
7 As deÐned, varies as r2~n.k

d
4npr2/(1 M

_
)
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FIG. 4.ÈWavenumber as given by the dispersion relationship, k \
which increases rapidly as g(r) drops, and thenD/2nGp D (g

s
[ g)/k

d
(r)),

more slowly as rn~3@2, for a p P r~n disk. The case shown is for n \ 2.
Curves are parameterized by the disk-to-secondary mass ratio with k

devaluated at a
s
.

disturbing function to order e2, yields the(eq. [1]) ee
s
,

familiar expression

du8
dt
K
s
B k

s
)
C1
4

ab3@2(1) [ 1
4

e
s
e

ab3@2(2) cos (u8 [ u8
s
)
D

(29)

for the precession rate of an isolated test particle. The
nominal resonance position, is where the Ðrst terma0,equals the precession rate of the secondary, while theg

s
,

FIG. 5.ÈWavelength, j(r), deÐned by the relationship /
r
r`j(r) k dr \ 2n,

for the same cases as shown in The beginning of each curve marksFig. 4.
the value of the Ðrst wavelength. For higher mass disks, the Ðrst wave-
length extends beyond the rapid rise in k so that a precipitous drop in
wavelength is not observed.

second term is used to ““ tune ÏÏ the rate to the resonance
value for particles inside and outside of resonance. As the
resonance is approached, the eccentricity (in this linear
treatment) must diverge to shut o† the second term when it
is not needed. In this singularity was removed by° 2,
including e4 terms in the disturbing function. However, disk
gravity will also remove the divergence, as discussed below.

see also showed thatWard (1981 ; Heppenheimer 1980)
an axisymmetric disk of surface density p P r~n produces
an additional potential,

/
d
\ [2nGpr ;

j/0

= (4j] 1)[(2j) !/22j( j !)2]2
(2j ] 2 [ n)(2j [ 1 ] n)

\ [2nGprc
n
,

(30)

which also a†ects the precession rate. An easy way to
show this is by writing i2\ r d)2/dr ] 4)2 so that
i2[ )2\ r d)2/dr ] 3)2\ r~2 d(r3)2)/dr. Approxima-
ting and usingi2[ )2\ (i ] ))(i[ )) B [2) du8 /dt

allows one to Ðnd the precession rate. Theequation (14)
addition contribution from the undisturbed disk is

du8
dt
K
d
\ [1

2r2)
d
dr
A
r2 d/

d
dr
B

\ [C
n
k
d
) , (31)

which must be added to the right-hand side of equation (29),
where For a fair range of n,C

n
4 (n[ 1)(2 [ n)c

n
. C

n
B

O(1), and describes apsidal line regression,equation (31)
which shifts the resonance location inward toward the sec-
ondary see also Stern, & Duncan(Ward 1981 ; Levison,
1998).

Remembering that wave behavior of the disk results in a
much reduced eccentricity compared with the isolated par-
ticle case, the second term in can no longerequation (29)
vanish as a result of a divergence of e. On the other hand,
there is an additional part of the potential due to the spiral
wave, /@, yet to consider. It is shown in thatAppendix A
these two nonaxisymmetric terms cancel, leaving

1
4

a5@2b3@2(1) [ C
n

Ak
d,s
k
s

B
an~1@2 \ g

s
k
s
)

s
(32)

as the resonance condition. The disk correction to the reso-
nance location is small for disks of moderate mass, i.e.,

In this case, the resonance condition is approx-k
d,s [k

s
.

imately that used in The gradient of the precession° 2.
frequency is then

r
dg
dr

B [ 1
4

k
s
)

s
a

d
da

[a5@2b3@2(1) (a)]4 [!(a)g
s
, (33)

where !(a) is a function of semimajor axis but does not
depend explicitly on Laplace coefficients For(Appendix B).
a \ 0.770, !\ 9.11.

3.4. Eccentricities
Using the formulae developed above, we arrive at the

forced eccentricities of a self-gravitating disk. In the tight-
winding limit, the Ñuid diskÏs radial velocity is U B /@)/
2nGp (e.g., while the eccentricity isHWR),

edw\
K U
r)
K
B

1
4

e
s
k
s
ab3@2(2) (a)

A2n
k
d

B1@2A Q
o r dg/dr o

B1@2
oH

`
o ,

(34)
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with all but being evaluated at resonance. InoH
`

o equation
the Laplace coefficient is written in terms of a 4 1/b, by(34)

making use of the identity Substitutingb
j@2(m)(b) \ ajb

j@2(m)(a).
equations and evaluating(8) and (33) b3@2(2) (a0) \ 11.19
yields

edw B 1.1e
s
(k

s
/k

d
)1@2 oH

`
o . (35)

is compared with test-particle behavior inEquation (34)
for the case The collective response of theFigure 2 k

d
\k

s
.

disk suppresses the particlesÏ eccentricity below the isolated
particle value, when whiche' D 0.769e

s
1@3, k

d
/k

s
Z 2.4e

s
4@3,

for reads 5] 10~3. Hence, for low-mass diskse
s
D 0.01

with collective behavior is not important.k
d
[ 10~2k

s
,

However, for higher mass the forced eccentricity is reduced
by the wave action. For a disk mass comparable to
Neptune, the full amplitude eccentricity is edw D 0.011,
which is down by a factor of edw/e'D 1.4e

s
2@3\ 0.065B

At the resonance itself, and the eccentricity1/15. oH
`
o\ 12,is only half its downstream value.

3.5. Wave Criteria
As advertised, we now return to the issue of whether the

necessary conditions for wave action are met. Without col-
lective behavior, the orbit crossing of the reso-half-width8
nance for a noninteracting, isolated particle can be
estimated as wD (t/r dD/dr)1@2. The wave response will be
linear with nested orbits if i.e., whenj

*
[ w, t[ 4nGpr.

From and the linearityequation (24), tD O(e
s
k
s
r2)2),

criterion reads 4k
d
Z e

s
k
s
D 10~2k

s
.

Another concern is whether the presence of other reso-
nances, e.g., the 2 :1 mean motion resonance, could interfere
with wave action at the secular resonance. The behavior of
mean motion resonances when modiÐed by the Kuiper
beltÏs self-gravitation is yet to be examined, but we speculate
that if their orbit-crossing half-width [t

m
D O(mk

s
a
s
2)

s
2),

and is signiÐcantly lessr dD/dr B 3m)
s
), wD O(rk

s
1@2)]

than the apsidal wavelength, the e†ects on apsidal wave
generation will be minor. This requires k

d
/k

s
? g

s
/)

s
D

O(10~4), which is easily satisÐed.
Next, we check to see when the epicyclic radius, Dvdisp/),

due to any dispersion velocity, among the particlesvdisp,becomes comparable to the wavelength. Disk stability
requires a minimum dispersion velocity of v

c
\

regardless of particle size1.07nGp/i Bk
d
r) (Toomre 1964).

If the typical particles are large enough that their escape
velocities exceed this, they will have dispersion velocities

Call so that thevdispD vesc. vdisp/vc4 Q, vdisp^ k
d
Q(r)) ;

reader will recognize Q as the well-known Toomre stability
parameter. Setting and assuming down-vdisp/)D o k o~1,
stream behavior for k where g can be ignored, the location

of the wave propagation barrier is given byb
Q

b
Q
n D ()

s
/g

s
)Q

s
~1 , (36)

where is to be evaluated for an unperturbed diskQ
s
4 Q(r

s
)

at the distance of the secondaryÏs orbit.
Kuiper disk objects with escape velocities comparable to

ÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈ
8 This is the distance inside which orbits intersect. It is di†erent than the

amplitude half-width, which varies as t2@3.

stability minimum have radii R
c
\ k

d
(r))(8nGo/3)~1@2 D

km for o D 2 g cm~3. Therefore,0.2(k
d
/k

s
) Q

s
\ R/R

c
D

km)] for and5(k
s
/k

d,s)[R/(1 R[R
c
, b

Q
n \ 2.3 ]

km)]~1, i.e., D450 AU in an n \ 2103(k
d,s/ks

)[R/(1
Neptune-mass disk composed of 10 km Kuiper objects, 140
AU if most of the mass is in 100 km objects. For n \ 3/2,
these distances increase to D1100 and D240 AU, respec-
tively. (A better estimate of the distance to the Q-barrier can
be found by including the Toomre reduction factor in the
dispersion relation ; see &Toomre 1964 ; HWR; Hahn
Ward 1998.)

Next check the requirement that there be multiple par-
ticles within a wavelength. Downstream, where k changes
little during a given cycle, we can write

j \ 2n
k

] 2nr
k
d
)

g
s

B 3.8a
s
b3@2~n

k
d,s
k
s

. (37)

Because waves from a secular resonance can be extremely
long, AU, this requirement is easily satis-j DO(102k

d
/k

s
)

Ðed, i.e., the typical spacing between particles is DN~1@2,
where N 4 p/M is the surface number density of objects of
mass M. objects have masses of order 10~6 forQB1 ME ;
this mass, If the bulk of thejN1@2D O(104)(k

d
/k

s
)3@2.

material is in smaller objects, R\ 100 km, there is an addi-
tional factor of (102 km/R)3@2.

3.6. SecondaryÏs Orbit
The reaction torque, on the second-T

s
\ [T \ r/@2/4G,

ary can have important e†ects on its orbit (see, e.g.,
& Tremaine The secondaryÏs angularGoldreich 1980).

momentum and energy are L \M
s
a
s
2)

s
(1 [ e

s
2)1@2

and Di†erentiating with respect toE\ [M
s
(a

s
)

s
)2/2.

time and rearranging yields anda5
s
/a

s
\[E0 /E e5

s
/e

s
\

where Since a wave[e
s
~1(1 [ e

s
2)1@2(L0 /L ] E0 /2E), L0 \ T

s
.

potential appears stationary in a reference frame rotating at
its pattern speed, the rates of change are related by E0 \

by virtue of the Jacobi constant. From this, semi-)ps L0 ,major axis and eccentricity variation rates can be derived :
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s
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s
\ 2T

s
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s
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s
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s

)ps
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s
,
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s
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s
\ [T

s
M

s
e
s
2 a

s
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s
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s

J1 [ e
s
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(38)

Substituting the torque and pattern speed, for the secularg
s
,

resonance in the equation for yieldse
s

1
e
s

de
s

dt
K
sec

D [ n
4

b3@2[b3@2(2) (b)]2k
d
k
s
)

s

A )
s

[r dg/dr
B

D [1.66k
d
k
s
)

s
)

s
g
s

, (39)

and the eccentricity decays. From it followsequation (38),
that the ratio o e5

s
/e

s
o/o a5

s
/a

s
o\ [)

s
/)ps[ (1 [ e

s
2)1@2]/2e

s
2B

so that the semimajor axis changes little)
s
/2e

s
2g

s
? 1,

during the decay of the eccentricity.
should be compared with the excitationEquation (39)

rate from Lindblad resonances,

1
e
s

de
s
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12n
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s
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s

C19
4

K1
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3
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] 5K0
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s
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(40)
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FIG. 6.ÈSurface density perturbation in an n \ 2 disk for an one-
armed trailing apsidal wave generated in an extended Kuiper belt by a
secondary at 30.1 AU with normalized disk and secondary masses compa-
rable to NeptuneÏs mass. The white circle indicates the resonance site at
39.1 AU. Crests of the waves are white ; the grayscale is stretched to reveal
the contrast. The surface density amplitude can be found from Theeq. (43).
Ðrst wavelength is D75 AU, in agreement with the curve ofk

d
/k

s
\ 1 Fig.

and decreases as r~1@2. These waves are predicted to become nonlinear5,
at D330 AU, which is near the edge of the plot.

& Tremaine where is the(Goldreich 1980 ; Ward 1988), m'highest order Lindblad resonance falling in a disk with an
inner edge a distance from the secondary.*r \ r

e
[ a

sUnlike falls o† rapidly as *r is(e5
s
/e

s
)sec, equation (40)

increased. Thus, Lindblad resonances cannot prevent the
decay of the eccentricity if the distance to the inner edge
exceeds AU, which is*r D 0.4a

s
(g

s
/)

s
)1@4 B 0.04a

s
D 1.2

comparable to the edge of the chaotic zone. When the
secular resonance dominates, decays with a characteristice

stimescale of yr, and the disk torqueqdecay D 5.2 ] 105k
s
/k

don the secondary quickly damps its orbital eccentricity.9

4. DISCUSSION

plots the perturbed surface density forFigure 6 k
d
/k

s
\ 1,

found from the WKB solution to PoissonÏs equation for /@ :

p@\ i
2nGr1@2

d
dr

(r1@2/@) (41)

(e.g., & Tremaine The long wave-Goldreich 1978, 1980).
length keeps the response linear at launch because nonlin-
ear forcing only occurs when (see, e.g., foredwZ j

*
/r HWR),

which For larger disks, the forcing at reso-k
d
/k

s
[O(10~2).

nance is linear.
Nonlinearity can develop downstream if the waves wind

up and/or the surface density drops sufficiently. The frac-
tional perturbation of the wave, p@/p, is found from the

ÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈ
9 Actually, the torque from an interior secular resonance would excite

the eccentricity & Ward but here we assume that the interior(Hahn 1998),
planetesimal disk has been swept up by planet formation by the time
Neptune forms.

conservation of angular momentum luminosity

oL o\ mn2Gr
K p@
k
K2\ mr/@2

4G
B

mn2pt2
o r dD/dr o

K
0

(42)

& Tremaine where the(Toomre 1964 ; Goldreich 1978),
right-hand side is to be evaluated at resonance. For our
Neptune model, the fractional density perturbation is

p@
p

\ e
s
a0(2n`5)@4b3@2(2)

A k
s

k
d,s

B3@2A g
s

k
s
)

s

B1@2A n
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s

B2(n~1)

B 1.1e
s
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s
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d,s

B3@2
a0n@2
A r
a
s

B2(n~1)
. (43)

For n \ 2, p@/p approaches unity at r B
which for AU, and1.1e

s
~1@2(u

d,s/ks
)3@4a

s
, e

s
\ 0.01, a

s
D 30.1

reads r D 330 AU. Nonlinear waves may shock-k
d,s Dk

sdissipate, depositing their energy and angular momentum
in remote regions of the disk. The large wavelengths of
apsidal waves may also render them detectable in extrasolar
disks. This issue is to be addressed in a follow-up paper

& Ward(Hahn 1998).
Long-term test-particle integrations have shown that

Neptune will eject bodies with q \ 35 AU over timescales of
less than 109 yr et al. The removal of test(Duncan 1995).
particles with a \ 35 AU is likely assisted by NeptuneÏs
mean motion resonances. However, it appears that the
mean motion resonances must play a lesser role in stirring
and depleting the more distant parts of a Kuiper belt com-
posed of test particles. The Jacobi constant for a particle at
an (m] 1) :m mean motion resonance has the same form as

but with AB 3(m] 1)2/4 and (e.g.,equation (4) CB 8mk
s
/5

so the particleÏs maximum eccentricity isPeale 1986),

e'\ (C/A)1@3B (2.1k
s
/m)1@3(1 ] 1/m)~2@3

B 0.05m~1@3(1 ] 1/m)~2@3 ,

and its perihelion is q \ a
s
[(1 ] 1/m)2@3 [ 0.05/m1@3][ 35

AU for all of the m¹ 3 resonances that lie beyond 35 AU.
Therefore, it appears that the resonance is the most sig-g8niÐcant in-plane perturbation exerted by Neptune in the
more distant parts of the Kuiper belt. In it was con-° 2,
Ðrmed that the perturbations exerted on a massless test
particle at the resonance are sufficiently vigorous tog8excite its eccentricity and lower its perihelion below 35 AU
for a range of semimajor axes. Consequently, this resonance
may act as a particle sink in the current Kuiper belt, since
nearby particles may di†use into the resonance.

Although long-term test-particle integrations shed light
on the later behavior of the Kuiper belt, they appear less
credible for its earliest stage, when its mass may have been
much larger. The self-gravity of the disk cannot be ignored,
and the particles can respond in a collective (i.e., wave)
mode. At a secular resonance, the necessary conditions for
wave action are easily satisÐed, and Neptune launches
apsidal waves that propagate outward into the Kuiper belt.
The wave response spreads NeptuneÏs torque over the col-
lective scale, resulting in signiÐcantly lower particle eccen-
tricites than predicted by the isolated particle treatment.
The particle motions are coherent and nested and do not
contribute to a dispersion velocity. Since test-particle simu-
lations do not consider particle-particle interactions, they
fail to account for this transport of density waves, and thus,
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the reliability of their Ðndings is uncertain. For a secular
resonance at D39 AU in a disk, particles acquirek

d
BkNepinsufficient eccentricities to have their perihelia within 35

AU of Neptune. Indeed, it seems problematic whether this
secular resonance could contribute signiÐcantly to the
depletion of the Kuiper belt in an early, high-mass stage,
unless it somehow acts in concert with other resonances in
an as yet unknown manner. This caveat may also apply to
other situations treated by test-particle integrations, such as
the depletion of the asteroid belt and of planetesimals
between the planets.

The lowest mass estimate of the primordial Kuiper belt
obtained via a test-particle simulation is given in Figure 8 of

et al. who require an initial number densityDuncan (1995),
proÐle of n(r) D 3 ] 106(40 AU/r)2 particles AU~2 to
account for the present Ñux of Jupiter-family comets into
the inner solar system. This implies an initial surface density
of p D 0.06[R/(10 km)]3 g cm~2 or km)]3k

d
/k

s
D 0.7[R/(10

at 40 AU, assuming a mass density of 1 g cm~3. Since the
bulk of these objects must be comet-sized, R is likely D1È10
km. Inserting this disk mass into the discussion of ° 3.5
shows that, even at the low end, the criteria for apsidal wave
propagation are marginally met, although the waves may
be nonlinear. Again, these models do not allow for the de-
focusing of the planetÏs disturbance at resonance due to the
diskÏs self-gravity, and, as a result, the erosion rates report-
ed in et al. may be overestimated.Duncan (1995)

A substantial disk is required by models in which the
giant planets migrate (e.g., & IpFerna� ndez 1983, 1984,

For instance,1996 ; Malhotra 1995, 1996). Malhotra (1998)
estimates that D35 of disk material distributed betweenMEthe giant planets is necessary to expand NeptuneÏs orbit
such that Pluto is captured at a mean motion resonance
with its eccentricity pumped up to the observed value. If one
spreads this amount of disk material between the giant
planets as per an r~2 surface density distribution and then
extrapolates additional mass beyond NeptuneÏs orbit,10
then the inferred disk mass is k

d
/k

s
D 0.6.

A similarly massive primordial Kuiper belt has been pos-
tulated by Stern who prefers D10È50 of(1996a, 1996b), MEmaterial between 30 and 50 AU (i.e., for ank

d
/k

s
D 0.6È3

r~2 surface density distribution) in order to collisionally
assemble D100 kmÈsized Kuiper belt objectsQB1-type
prior NeptuneÏs formation. In this scenario, Neptune forms

ÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈ
10 Although it should be said that extending the disk well beyond

Neptune is an additional assumption not required by the migration
hypothesis.

after D108È109 yr and is then presumed to stir up the disk
so much that further growth of objects is halted.QB1Although NeptuneÏs shorter wavelength Lindblad waves
will be shut o† once the particles achieve that size,
NeptuneÏs apsidal waves still propagate. If this scenario is to
succeed, then it remains to be demonstrated whether
Neptune can actually stir up this massive disk in order to
shut o† its apsidal waves, truncate particle growth at QB1sizes, and also deplete the disk to its current low-mass state.

NeptuneÏs ability to erode a massive primordial disk is
further inhibited by the torque that the disk exerts upon the
planet. The torque between planet and disk is surprisingly
strong, because the long wavelengths allow the disk to
couple to the forcing potential over large distances. As a
result, NeptuneÏs eccentricity-damping timescale could be
quite short as compared with the age of the solar system,
which obviously contradicts NeptuneÏs Ðnite (though curi-
ously low) eccentricity. One possible resolution to this
dilemma is that an extended, high-mass Kuiper belt beyond
50 AU does not exist and the drop-o† in surface density past
Neptune is a remnant of the true edge of the primordial
planetesimal disk. Alternatively, sufficient erosion of the
disk beyond the secular resonance could shut down the
wave response. However, we have seen that collective
behavior may inhibit erosion, so a better treatment of this
problem, including Lindblad resonances, is needed. Still
another possibility is that waves reÑect o† the Q-barrier or a
real disk edge before damping and return their energy and
angular momentum to the resonance zone. At any rate, the
requirement that NeptuneÏs present eccentricityÈor, more
precisely, the amplitude of the modeÈbe Ðnite could beg8used to place a rather stringent constraint on the mass and
distribution of the current Kuiper belt. This important topic
is addressed in another paper, viz., & HahnWard (1998).
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APPENDIX A

To calculate the e†ect of the wave potential on a particleÏs precession rate, GaussÏs form of LagrangeÏs equation is
employed :

du8
dt

\ J1 [ e2
ea)

C
[F

r
cos f ] Fh

Ar
p

] 1
B

sin f
D

, (44)

where f is the true anomaly, and are radial and azimuthal perturbation forces, respectively, and p 4 a(1[ e2). In theF
r

Fhtight-winding limit, o L/@/Lr o? (1/r) o L/@/Lh o, which implies so we drop the second term and setoF
r
o? o Fh o,

F
r
B Re [e~i(f`Ï~Ïs)([d/@/dr)] . (45)

The wave potential satisÐes For a test particle at resonance D\ 0, and the orbit-averaged contribution of theequation (13).
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wave potential to the precession rate becomes

du8
dt
K
w

\ t
2ea2) cos (u8 [ u8

s
) . (46)

Substituting for t reveals that cancels the problematic term inequation (46) e
s
/e equation (29).

APPENDIX B

The derivative of g is

r
dg
dr

\ [1
4

k
s
)

s
a5@2
A5
2

] a
d
da

b3@2(1)
B

. (47)

From & ClemenceBrouwer (1961),

a
d
da

b3@2(1) \ 1 ] 4a2
1 [ a2 b3@2(1) [ a

1 [ a2 b3@2(2) . (48)

The ratio of Laplace coefficients is given by the continued fraction

b3@2(2)
b3@2(1) \ 5

4
a

1 [
aa2
1 [

ba2
1 [

ca2
1 [

da2
1 [ É É É 4 p3@2(2) (49)

& Clemence with etc. Combining and using leads to(Brouwer 1961) a \ [18, b \ 716, c\ 116, d \ 38, equation (8)

r
dg
dr

\ [g
7 [ 2ap3@2(2) ] 3a2

2(1[ a2) 4 [g!(a) . (50)

For a \ 0.770, and !\ 9.11.p3@2(2) \ 0.874
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