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ABSTRACT

The role of apsidal density waves propagating in a primordial trans-Neptune disk (i.e., Kuiper belt) is
investigated. It is shown that Neptune launches apsidal waves at its secular resonance near 40 AU that
propagate radially outward, deeper into the particle disk. The wavelength of apsidal waves is consider-
ably longer than waves that might be launched at Lindblad resonances, because the pattern speed, g,
resulting from the apsis precesssion of Neptune is much slower than its mean motion, Q,. If the early
Kuiper belt had a sufficient surface density, o, the disk’s wave response to Neptune’s secular perturbation
would have spread the disturbing torque radially over a collective scale A, ~ r(2u,<Q/|rdg/dr|)'/?, where
pa = mor*/(1 M) and Q(r) and g(r) are respectively the mean motion and precession frequency of the
disk particles. This results in considerably smaller eccentricities at resonance than had the disk particles
been treated as noninteracting test particles. Consequently, particles are less apt to be excited into
planet-crossing orbits, implying that the erosion timescales reported by earlier test-particle simulations of
the Kuiper belt may be underestimated. It is also shown that the torque the disk exerts upon the planet
(due to its gravitational attraction for the disk’s spiral wave pattern) damps the planet’s eccentricity and

further inhibits the planet’s ability to erode the disk.
Key words: celestial mechanics, stellar dynamics — comets: general — minor planets, asteroids

1. INTRODUCTION

In the past few years, the nature and dynamics of the
Kuiper belt have been a subject of considerable attention.
Interest was sparked by the demonstration by Duncan,
Quinn, & Tremaine (1988) that a trans-Neptune disk could
provide a plausible source for short-period comets. The dis-
covery of the first Kuiper belt object, 1992 QB,, by Jewitt &
Luu (1992) further accelerated efforts of both observers and
modelers. Great advances in both machine capability and
computing techniques led to a series of increasingly inten-
sive numerical experiments on the dynamics of test particles
in the Kuiper belt region, e.g., Torbett (1989), Gladman &
Duncan (1990), Holman & Wisdom (1993), Levison &
Duncan (1993), and Duncan, Levison, & Budd (1995). These
experiments made it clear that both secular and mean
motion resonances play a major role in shaping the evolu-
tion of the Kuiper belt. Analytic treatments of Kuiper belt
resonant dynamics have been provided by Morbidelli,
Thomas, & Moons (1995) and Malhotra (1995, 1996).

To date, observations have yielded some 55 trans-
Neptune bodies like 1992 QB,. Based on the size of the sky
area searched, estimates of the total population of such
objects within 10° of the ecliptic and larger than 100 km are
on the order of a few times 10*. The total mass of the belt
out to ~50 AU from objects greater than ~1 km in diam-
eter is put at 0.06—0.25 Earth masses (M) (e.g., Jewitt, Luu,
& Chen 1996; Stern 1996a).> However, these objects are far
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2 The recent discovery of 1996 TL points to an additional scattered
Kuiper belt component having a mass ~0.5 My with orbits between ~ 40
and 200 AU (Luu et al. 1997).
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from uniform in their orbital characteristics. Most objects
interior to ~40 AU appear to reside in mean motion reso-
nances with Neptune. These resonant orbits may be instru-
mental in preserving their occupants; it is well known that
Pluto enjoys such protection through its 3:2 resonance with
Neptune, which prevents close encounters between these
objects. Resonant objects typically have high eccentricities,
which may be evidence of resonance sweeping due to an
outward migration of Neptune (Malhotra 1998).

The formation and possible migration of Neptune
requires a few Neptune masses of material to be scattered
by that planet (Fernandez & Ip 1983, 1984, 1996), suggest-
ing a primordial Kuiper belt considerably in excess of
today’s estimates if the belt extended smoothly into that
region as well. Indeed, observations of extrasolar disks, such
as f§ Pictoris, reveal remnant disks stretching far beyond the
Sun-Neptune distance. In addition, the existence of 100 km—
sized objects such as QB; has been interpreted as evidence
of a much more massive (i.e., 10-50 My between 30 and 50
AU) primordial Kuiper belt. Stern and coworkers (Stern
1995, 1996a, 1996b; Stern & Colwell 1996) have pointed out
that accretion in the current environment would not be
possible, because of (1) high relative velocities, which are
erosive, and (2) long collision timescales due to low number
density. They argue that a much more massive and quies-
cent disk was needed in the past to account for the accretion
of the largest objects so far observed. They postulate that
this more massive disk may still exist beyond the gravita-
tional influence of the giant planets, i.e.,r = 50 AU, and that
the low-density region between there and Neptune may be
highly depleted as a result of planetary perturbations. The
current flux of short-period comets, which are suggested to
originate from chaotic layers bounding low-order mean
motion resonances (e.g., Malhotra 1996), may be the
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present-day manifestation of this erosion process. Numeri-
cal experiments show that many test particles achieve
Neptune-crossing status within 1 Gyr (Levison & Duncan
1993; Duncan et al. 1995) due to the action of secular and
mean motion resonances. These results are reminiscent of
studies of the stability of test particles between the major
planets (e.g., Franklin, Lecar, & Soper 1989; Duncan et al.
1988; Weibel, Kaula, & Newman 1990; Gladman &
Duncan 1990; Soper, Franklin, & Lecar 1990; Holman &
Wisdom 1993; Grazier et al. 1997).

It is very tempting to extend the numerical and analytic
studies of test-particle behavior that have proved so valu-
able in explaining many of the emerging characteristics of
the Kuiper belt to earlier epochs, when the belt was presu-
medly more massive. However, some caution is in order;
test-particle integrations are strictly valid only when there
are no interactions with other particles in the disk. And yet
a motivation for postulating a much more massive primor-
dial disk is to speed up accretion rates, i.e., to ensure more
numerous collisions among the swarm. This may be a
source of diffusion that is not included in the numerical
models. Even more important are collective particle behav-
iors. These effects are long range and act continuously, not
just during collisions. It is well known that a perturber
orbiting in a fluid disk will launch density waves at reso-
nances and that the resulting fluid motions are quite unlike
that of an isolated particle subject to the same pertur-
bations. The question is, when is a fluid model a more rea-
sonable approximation of a particle disk than the motions
of noninteracting members? In this paper, we explore that
question for the particular case of a secular eccentricity
resonance and show that the necessary conditions for wave
action are easily satisfied. The resultant disk behavior is
that of a one-armed spiral apsidal wave that propagates
outward into the Kuiper belt. Apsidal waves have pre-
viously been reported in Saturn’s rings (Cuzzi, Lissauer, &
Shu 1981), where the apsidal precession rate of the ring
particles is commensurate with the mean motion of the
satellite Iapetus. However, this is the first application we are
aware of in which the waves are launched from a true
secular resonance, ie., where the commensurability is
between the apsidal rates of both perturber and disk par-
ticles. As we shall see, this has important implications for
disk stirring and for the orbit of the perturber launching the
waves.

In § 2, we review the behavior of an isolated particle that
orbits near a secondary’s secular resonance and calculate
the particle’s forced eccentricity as a function of semimajor
axis. In § 3, these findings are contrasted with the motions
that result when the disk has a nonnegligible self-gravity
that allows for the propagation of density waves. Density
wave theory is also used to compute the secondary’s orbital
evolution as it reacts to the waves it drives. Results are then
summarized in § 4 with a discussion of how these findings
may impact models of the primordial Kuiper belt.

2. TEST-PARTICLE MOTION

We begin by reviewing the behavior of a test particle
orbiting near a secular resonance. Since particle orbits
exterior to Neptune are to be examined, the weaker forcing
terms due to the other planets are omitted. Neptune has a
mass M, = 1.02 x 103! g, a semimajor axis a, = 30.1 AU,
orbital period P, = 165 yr, eccentricity e, = 0.009, and a
precession rate of the longitude of perihelion d&,/dt = g,
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gs, i.¢., the frequency, 07673 yr ! of the g, mode of the solar
system, with corresponding period Pz ~ 1.93 x 106 yr. This
is the dominant term of the secular variation of Neptune’s
orbit (see, e.g., Applegate et al. 1986; Knezevic et al. 1991).
To first order in e,, and fourth order in e, the particle’s
eccentricity, the secular perturbation potential due to the
secondary is

b, = —p.a b‘°) e abd) + L 3 4 JXe)
s s 12+ 8 327 178 do2 32
1
— 1% ab$, cos (@ — @) (1)

(e.g., Brouwer & Clemence 1961), where a and Q are respec-
tively the test particle’s semimajor axis and mean motion, @
is its longitude of perihelion, pu,= M /(1 My) = 5.15 x
1075, & = a/a < 1in the Kuiper belt, and

" cos mfdo
o (1 — 2 cos 0 + a?)/?

are Laplace coefficients. The secondary and particle orbits
are assumed to be coplanar, and the elements subscripted s
refer to the secondary.

Since the pattern speed, Q,, is the precession rate, g, the
Jacobi integral averaged over short-period terms is

J=E—-Q,L=—(a9Q)7°2+ ¢, — g,a°Q/1 — €*,

where E and L are the specific energy and angular momen-
tum of the particle, respectively. To the same accuracy as
equation (1), the normalized quantity J = —2J/u(aQ)?,
with ¢ = @ — @, can be written

)

bij(@) =

J=Ae* + Be* —Cecos ¢ + D, @)
o> d’b§) g o g
A=2_2232_ _9s  p=Zp) _ Is
64 do?  4u,Q° 41’3/2 Q’ 5
2, 1
C=e b, Db+

A particle’s semimajor axis does not vary as a result of
secular forcing, so equation (4) may be used to construct
phase-space plots along curves of constant J (level curves)
to show how its eccentricity varies with the resonance angle
¢. Figure 1a shows the level curves for J — D when a =
137a (¢ = ag/a = 0.731), while Figure 1b displays J—D
versus e when sin (@ — @,) = 0. The extrema, given by

0J/0e = 44e® + 2Be + C =0, ©6)

are the stationary points in Figure 1a. Phase-space trajec-
tories tend to circle stationary points 1 and 2, while point C
lies on the separatrix. Stationary-point positions are a func-
tion of the particle’s semimajor axis. The site o where the
particle’s precession rate, g(o) = g, Qub$(«), matches the
planet’s precession rate, g,, is identified as the resonance
location in the lower order theory of Brouwer & Clemence;
this site will be denoted here as «,. The two branches of
equation (6) can be computed numerically and are shown in
Figure 2. However, simple analytic formulae are obtained
by expanding equation (6) about o, where B = 0. The coeffi-
cient B can be replaced by ~ B'Aa, where Ao = o — o, and

;o d_B 1 5/2 (1)
B_da " 40372 dy, ( b3 )ao' @
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F1G. 1.—a) J level curves for eq. (4). Each curve is a polar plot of
eccentricity e vs. resonance angle ¢ for particles having the same semi-
major axis, o« =0.731, but different values of J (ie., different free
eccentricities). This and subsequent figures assume Neptune’s mass and
orbit. (b) The solid curve shows J—D vs. e cos ¢ (D is constant) when
sin ¢ = 0, and the dotted lines identify the values of J— D for each of the
level curves in (a); the lowest dotted line refers to the smallest bean-shaped
orbit in (a) while the upper dotted line is for the outermost orbit.

In this case, A and C can be evaluated at o, as well with
little error. The reference value o is now found from

1 sy | _ 9s _
32| =g =167, ®)

S

The left-hand side can be evaluated numerically from
equation (2), which reveals that equation (8) is satisfied by
the value a, = 0.770. This implies that the resonance falls at
ao, = 39.1 AU, which agrees reasonably well with the
location of the g4 resonance found by KneZevic et al. (1991)
when I = 0.
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F1G. 2—Particle’s forced eccentricity e vs. semimajor axis (note that a
increases to the left). The curve labeled “2” is the numerical solution to eq.
(4) with cos ¢ = +1, while the cos ¢ = —1 solution has an upper (C)
segment and a lower (1) segment. The lower portion of curve 2 left of e,
and the lower segment (1) represent the eccentricities that are likely
adopted by a disk of initially cold particles. A filled circle indicates the
maximum eccentricity e, = 0.17, which occurs a distance Aa, = —0.01
from the resonance site «,,, consistent with the estimates given by egs. (10)
and (11). Also shown is the e(x) necessary for the perihelion distance,
q = 35 AU, and the eccentricity from the wave solution for a u; = p, disk.

The equilibrium e-values versus Aa are given by

A_1C
- 222 =
Ao = —2e B8 )]
The negative branch turns around (i.e., de/d Aa = o) at
1/C\"? 34 (C\*3
=—|= Ao, = —=—= | = .
% =3 (A) > BT T <A> (10)

At a,, the ratios are A/B’ = 0.324 and C/A = 0.455¢,. Below
e, the negative branch gives the eccentricity for point 1;
above e, it is e of point C. The positive branch gives the
eccentricity for point 2. This application considers a planet
that has recently formed from a cool disk composed of
noninteracting bodies,> so the particles’ forced eccentricities
will likely lie along the lower portions of the Figure 2 curves
whenever they are multivalued. The resulting maximum e
on the positive branch is e,,,, = 2e, = (C/A4)"?. The corre-
sponding e-values are

e, = 0.385¢}?, e, ., =0.76%}> . 1)

For our adopted eccentricity (e; ~ 0.01), these become 0.083
and 0.166, respectively. But, as already mentioned, this
treatment does not consider the additional perturbations
that are also exerted by an ensemble of disk particles. How
the disk’s self-gravity affects the motions of its individual
members is the subject of the remainder of this paper.

max

3 For now, we assume that their free eccentricities due to gravitational
relaxation of the disk can be neglected.
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3. COLLECTIVE RESPONSE
3.1. Scale Length

Hahn, Ward, & Rettig (1995, hereafter HWR) have
recently investigated a closely related problem: the effects of
collective particle behavior on the trapping strength of mth-
order Lindblad resonances for particles experiencing orbital
decay due to gas drag. They found that the density wave
response of the particle disk, of surface density o, reduces
the trapping strength by redistributing the angular momen-
tum deposited at resonance over a collective scale length.
When compared with particles treated in isolation, this phe-
nomenon causes a strong reduction in the forced eccentric-
ities. This length is roughly the distance, 1, that density
waves can travel from resonance at their group velocity,
¢, ~ nGa/xk, during the libration time of the resonance vari-
able. The libration frequency is ¢ = |k —m|Q —Q_||,
where Q is the pattern speed and « is the local epicyclic
frequency of the disk. In terms of the so-called frequency
distance from resonance, D =k*>—m*(Q—Q,)*~
2k(k —m|Q — Q. |), the libration frequency is ¢ ~
(4/2x)| dD/dr | with an average value equal to half the
maximum. The libration time at distance 1, becomes 7, ~
1/{¢) =~ 4x/A,|dD/dr|, where the derlvatlve is evaluated at
D = 0. Solving self-consistently, the scale length is of order*

4nGo
r?dD/dr

The collective behavior smooths out the perturbation, so
that the torque cannot be concentrated on an annulus nar-
rower than 4.

HWR argued that there are two necessary conditions for
wave action: (1) there must be multiple particles present
within the collective scale, and (2) their epicyclic radii must
be less than the wavelength. We will tentatively assume that
these conditions are met and check their validity a poste-
riori (§ 3.5). First, however, the amplitude of the disk’s
forced motions will be derived and compared with the iso-
lated particle motions of § 2.

1/2

=r|2e1/2 (12)

x T

3.2. Wave Solution for Secular Resonances

A very readable account of the derivation of the first-
order wave equation for a self-gravitating disk is given by
Shu (1984). Following Shu, all perturbed quantities are
assumed to be of the form X — Xe'® ™™, where w = mQ,,
is the forcing frequency, and the amplitude, ¢’, of the disk
potential perturbation in the vicinity of resonance can be
found from

(4o irD¢’ _ _< b, 20, )
0

d 2nGo ar Q

which is obtained from Euler’s and Poisson’s equations
(Shu 1984) and is valid in the tight-winding limit, |d¢'/
dr| > | ¢'/r|. For apsidal waves m = 1, and the forcing fre-
quency o = Q_ = g,. The m = 0 potential can be combined
with the central potential, ¢, and any undisturbed disk
potential, ¢,, to determine the mean motion,

=y, 13

ps

d
=T (Po + do + &J) - (14)

* Actually, eq. (12) underestimates the collective scale when 4, becomes
so long that dD/dr itself decreases significantly over that distance.
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From Goldreich & Tremaine (1980, their eq. [5]),° the
secondary’s potential is

Z Zqﬁ,mcos[mﬁ mQt — (I — myx,t]

l=—owo m=0

o0

= Z Z ¢l,m Cos [me - (m - l)gst - le t] s (15)
I=—00 m=0
where the relationship
g, =day/dt = Q, — kg (16)

has been used. To get the secular terms, which do not
contain Qt, set | = 0. For ¢, < 1, the largest term in any
amplitude is proportional to e/’ ™! — e™. For our purposes
it is sufficient to retain only terms up to first order:

¢sec ~ ¢0,0 + ¢)0,1 Ccos (0 — G t) ) (17)
where, again from Goldreich & Tremaine (1980),

G
d’o,o = - 21;4 1/2(ﬁ)

S

d
o= —e S| bt 20 |.

(18)

with B =r/a, and the disk is assumed Keplerian.®
(Henceforth the I = 0 part of the subscript will be dropped.)
The solution to equation (13)is

'’ . D "y . D
¢ —exp< zjznGadr>J;erexp<lf2nGadr>dr,

19)

where r, denotes the inner boundary of the disk. For a
secular resonance,

D =x>— (g, — Q)* ~2Qg, — 9) ,
(g ) (9s — 9) 20)
dD ~_20% dg R 12
ar |, dr |, rdg/dr |,,’

where g(r) = Q — k is the apsis precession rate of the disk
particles, with r, locating the secular resonance where
D(ro) = 0 and g = g,, and where we have introduced the
so-called normalized disk mass, u, = nor?/(1 My)=
nGa/rQ2.

If A, <|ro —r.| and g/|dg/dr|.,, so that the collective
scale is small compared with both the separation between
resonance and disk edge and the scale over which a linear
expansion, D = (r — ro)dD/dr|,,, is reasonably good, equa-
tion (19) can be written in terms of Fresnel integrals:

¢’ = q2n|el)'Po H(¢) 21

5 Note that Shu’s sign convention is the reverse of Goldreich & Tre-
maine’s. We can bring egs. (15) and (17) into compliance by multiplying the
cosine arguments by — 1.

6 It is more convenient to develop the wave formalism in terms of f.
Note, however, that this is the reciprocal of « used in § 2.
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(see, e.g., Shu 1984), where
r—ro

q—sgn<d—D> {=q—F7—
ar)’ 7 Ty J2lel’

R
H =——e¢ ¢ e dy |

q
T

(22)

and ¥, = Y(B,) is the value of the forcing function at reso-
nance. If g(r) decreases with heliocentric distance, then q is
positive, and the direction of wave propagation is outward,
i.e., deeper into the Kuiper disk. This is opposite to the
propagation of waves launched from mean motion reso-
nances in this region. The amplitude | H ()| vanishes as
¢ - — oo (non—wave side), but approaches unity as £ —» oo
(wave side). The streamlines of the motion are ellipses
whose lines of apsides rotate in a clockwise manner with
increased distance from resonance, thereby generating a
one-arm spiral wave (e.g., Adams, Ruden, & Shu 1989).

To simplify y, note that ¢, oc fdb{'},/dp — b{}, and make
use of the fact that

(pi+2)(s i —op)=poi

dp dp
(Brouwer & Clemence 1961) to find
¥ = %e, b5 puoa; QF (24)

where the combination GM,/a, has been replaced by
~ ugaz Q2. Substituting  into ¢’ yields

P _ Y @) 202( 2
¢ 2 usBo b3/2(ﬁo)as Q; <|rdg/dr|

where only ¢ is allowed to vary, all other quantities being
evaluated at resonance. Downstream, | H , | — 1, and Figure
3 shows | ¢’| as a function of the disk’s mass. Most of the
driving occurs during the first wavelength, which increases

1/2
> H.(©), (29

0

10

19l Ay,

0.01 , | . | . | .
0.001 0.01 0.1 1.0 10
disk mass, p/u,

FiG. 3.—Absolute value of the downstream amplitude, | ¢'|, of the disk
wave potential normalized to the resonance value of the forcing function,
Vo = W(Bo) = (e/2)B0 b5 (Bo)ua, Q)>. The dashed curve is the small-
wavelength (low disk mass) solution (eq. [25]). The solid curve shows eq.
(26) taking into account variations in the Laplace coefficients, which
become more important as the wavelength increases.
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with the square root of the disk mass, resulting in a similar
increase in the amplitude.

At long wavelengths, setting all quantities except ¢ to
their values at resonance becomes more problematic.
Equation (25) can be improved upon by including the
most variable quantities, the Laplace coefficients, b$7(B),
inside the integrals. If m(f — 1) < 1, Laplace coefficients
can be approximated by modified Bessel functions:
b§) ~ 2mK (m|p — 1|)/n|p — 1| ~ (2/n)(f — 1)". Using
this, the wavenumber rk ~ (2m)” *(uy/u)[(Bo — 1)~ % — (B
— 1)~ %], and the downstream value can be replaced by

|¢'] = n(Bo — Db |HP(A)] (26)

where

Bl _206,-1)
BO_I, ﬂdQs ’

o)

H(ll)(A) - l wa—ZeiA(ﬁ-x‘l)/Z dX .
T Jo

The last quantity above can be recognized as an integral
representation of a Hankel function (see, e.g., Gradshteyn &
Ryzhik 1965). Numerically, A = 1.00(u,/u,), so that at low
disk mass A > 1 and H{™(A) — (2/nA)'"? exp i(A — 3n/4).
Substitution into equation (26) recovers equation (25), pro-
vided the identification rdg/dr = —2g/(f — 1) is made,
which is consistent with our approximation of Laplace
coefficients. However, for high-mass disks A <1 and
H{P(A) - 2i/nA, and the wave potential increases linearly
with disk mass. Equation (26) is also displayed in Figure 3.
Strictly speaking, even equation (19) is an approximation,
because its derivation ignores other slowly varying terms
that may be significant at long wavelengths. Nevertheless,
we see that equations (25) and (26) are useful approx-
imations even up to u; ~ Y.

Wave driving is mostly limited to the distance over which
the radial wavenumber, k(r) = D/2nGo = (g, — 9)/p, 1<,
increases rapidly with r. The concomitant shortening of the
wavelength is necessary for a net angular momentum flux to
develop. Figure 4 displays wavenumber, k, versus r for three
values of the disk mass,” py(r,) = py,, for a power-law disk,
o oc r~", with n = 2 including variation of all quantities. In
each case, the most rapid increase in wavenumber occurs
within the first ér ~ O(10) AU. The wavelength, A(r)—as
defined by ®(r + 1) — ®(r) = 2=, where the phase ®(r) =
| kdr—is shown in Figure 5 for the same disk masses as in
Figure 4. The curves start at 39.1 AU with the value of the
first wavelength.

3.3. Resonance Site

The amplitude of the disk’s wave response is sensitive to
the location of the resonance, which itself can depend upon
the disk’s potential (e.g., Ward 1981). To determine the reso-
nance site self-consistently, write the precession rate of a test
particle’s longitude of perihelion as

_d6 1 0¢r
=4 ~ ea?Q de
where ¢ = ¢ + ¢ + ds + ¢’ is the sum of all the con-

tributing potentials. The central ¢ oc 1/r potential can be
ignored because it cannot produce precession. Using the

(28)

7 As defined, p, = nor?/(1 M) variesasr> ",
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Fic. 4—Wavenumber as given by the dispersion relationship, k =
D/2nGo ~ (g, — g)/u(rS), which increases rapidly as g(r) drops, and then
more slowly as "~ %2, for a ¢ oc r~" disk. The case shown is for n = 2.
Curves are parameterized by the disk-to-secondary mass ratio with p,
evaluated at a,.

disturbing function (eq. [1]) to order e?, ee,, yields the
familiar expression
dd

dt

for the precession rate of an isolated test particle. The
nominal resonance position, «,, is where the first term
equals the precession rate of the secondary, g,, while the

1 1
~ “SQ[Z ab$, — y % ab cos (& — (Z)s):| (29)

distance g
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F1G. 5—Wavelength, A(r), defined by the relationship [***” kdr = 2x,
for the same cases as shown in Fig. 4. The beginning of each curve marks
the value of the first wavelength. For higher mass disks, the first wave-
length extends beyond the rapid rise in k so that a precipitous drop in
wavelength is not observed.
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second term is used to “tune” the rate to the resonance
value for particles inside and outside of resonance. As the
resonance is approached, the eccentricity (in this linear
treatment) must diverge to shut off the second term when it
is not needed. In § 2, this singularity was removed by
including e* terms in the disturbing function. However, disk
gravity will also remove the divergence, as discussed below.
Ward (1981; see also Heppenheimer 1980) showed that
an axisymmetric disk of surface density o oc r~" produces
an additional potential,
S @+ DIYY22G)* T

94 = _Z”G‘”j;o QG +2—nm2—14n

—2nGore,, ,

(30)

which also affects the precession rate. An easy way to
show this is by writing x2? = rdQ?/dr + 4Q? so that
k> — Q2 =rdQ?/dr + 3Q? = r~2d(r*Q?)/dr. Approxima-
ting k2 —Q%=(k + Qk — Q) ~ —2Qdd/dt and using
equation (14) allows one to find the precession rate. The
addition contribution from the undisturbed disk is

do| _ —1 d (;dés) _
g - 2720 dr <7‘ ) - Cn .udQ ’ (31)

dt dr

which must be added to the right-hand side of equation (29),
where C, = (n — 1)(2 — n)c,. For a fair range of n, C, ~
O(1), and equation (31) describes apsidal line regression,
which shifts the resonance location inward toward the sec-
ondary (Ward 1981; see also Levison, Stern, & Duncan
1998).

Remembering that wave behavior of the disk results in a
much reduced eccentricity compared with the isolated par-
ticle case, the second term in equation (29) can no longer
vanish as a result of a divergence of e. On the other hand,
there is an additional part of the potential due to the spiral
wave, ¢, yet to consider. It is shown in Appendix A that
these two nonaxisymmetric terms cancel, leaving

1 l'td,s n— gs
3 0% - C,,<—>ac Gy (32)

S

S S

as the resonance condition. The disk correction to the reso-
nance location is small for disks of moderate mass, i.e.,
Uas S U In this case, the resonance condition is approx-
imately that used in § 2. The gradient of the precession
frequency is then
dg 1 d
r—=~ —=uQ o—[a?bP(@)] = —T(®g,, (33
dar 2 Hs3es doo L 3/2( )] (g, (33)
where I'(@) is a function of semimajor axis but does not

depend explicitly on Laplace coefficients (Appendix B). For
a=0.770,T = 9.11.

3.4. Eccentricities

Using the formulae developed above, we arrive at the
forced eccentricities of a self-gravitating disk. In the tight-
winding limit, the fluid disk’s radial velocity is U ~ ¢'Q/
2nGo (e.g., HWR), while the eccentricity is

U 1 27'L' 1/2 Q 1/2
=|—|~ - b2 — —_— H
€aw ‘rQ‘ 4 €5 Us % 3/2(“)<Hd> <|rdg/dr l) |H,|,

(34)
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with all but | H | being evaluated at resonance. In equation
(34) the Laplace coefficient is written in terms of « = 1/8, by
making use of the identity b{7(8) = a’/b{j)(«). Substituting
equations (8) and (33) and evaluating b$)(x,) = 11.19
yields

Caw ~ l'les(ﬂs/ﬂd)llz | H+| . (35)

Equation (34) is compared with test-particle behavior in
Figure 2 for the case p; = u,. The collective response of the
disk suppresses the particles’ eccentricity below the isolated
particle value, e, ~ 0.769¢l/3, when p,/u, = 2.4e*3, which
for e; ~ 0.01 reads 5 x 10~ 3. Hence, for low-mass disks
with p; < 1072, collective behavior is not important.
However, for higher mass the forced eccentricity is reduced
by the wave action. For a disk mass comparable to
Neptune, the full amplitude eccentricity is ey, ~ 0.011,
which is down by a factor of e, /e, ~ 1.4e2* = 0.065 ~
1/15. At the resonance itself, | H,| = %, and the eccentricity
is only half its downstream value.

3.5. Wave Criteria

As advertised, we now return to the issue of whether the
necessary conditions for wave action are met. Without col-
lective behavior, the orbit crossing half-width® of the reso-
nance for a noninteracting, isolated particle can be
estimated as w ~ (//r dD/dr)*/?. The wave response will be
linear with nested orbits if A, > w, ie., when ¥ < 4nGor.
From equation (24), ¥ ~ O(e, u,r*Q?), and the linearity
criterion reads 4y, 2 e, ~ 107 %y,

Another concern is whether the presence of other reso-
nances, €.g., the 2:1 mean motion resonance, could interfere
with wave action at the secular resonance. The behavior of
mean motion resonances when modified by the Kuiper
belt’s self-gravitation is yet to be examined, but we speculate
that if their orbit-crossing half-width [,, ~ O(mpu,a? Q2),
rdD/dr ~ 3mQ,Q, and w ~ O(rul/?)] is significantly less
than the apsidal wavelength, the effects on apsidal wave
generation will be minor. This requires pu,/p, > g,/Qs ~
0(10~*), which is easily satisfied.

Next, we check to see when the epicyclic radius, ~v;,,/Q,
due to any dispersion velocity, vg4;,, among the particles
becomes comparable to the wavelength. Disk stability
requires a minimum dispersion velocity of v, =
1.07nGo/x ~ u,rQ regardless of particle size (Toomre 1964).
If the typical particles are large enough that their escape
velocities exceed this, they will have dispersion velocities
vdisp ~ Vese» Call vdisp U, = Q: Y that Udisp = Uy Q(TQ); the
reader will recognize Q as the well-known Toomre stability
parameter. Setting v,,,/Q ~ |k|™', and assuming down-
stream behavior for k where g can be ignored, the location
B, of the wave propagation barrier is given by

Bo ~ Q/g)05 " 5 (36)

where Q, = Q(r,) is to be evaluated for an unperturbed disk
at the distance of the secondary’s orbit.
Kuiper disk objects with escape velocities comparable to

8 This is the distance inside which orbits intersect. It is different than the
amplitude half-width, which varies as /3.
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stability minimum have radii R, = p(rQ)8nGp/3)”1/* ~
0.2(uy/p;) km for p ~2 g cm™3. Therefore, O, = R/R, ~
S(u/pa JIR/(1  km)] for R>R, and pf5=23x
10*(us o/u)[R/(1 km)]™%, ie, ~450 AU in an n=2
Neptune-mass disk composed of 10 km Kuiper objects, 140
AU if most of the mass is in 100 km objects. For n = 3/2,
these distances increase to ~1100 and ~240 AU, respec-
tively. (A better estimate of the distance to the Q-barrier can
be found by including the Toomre reduction factor in the
dispersion relation; see Toomre 1964; HWR; Hahn &
Ward 1998.)

Next check the requirement that there be multiple par-
ticles within a wavelength. Downstream, where k changes
little during a given cycle, we can write

A

L2 g B 3gq prran Pas 37)
k 9s Hs

Because waves from a secular resonance can be extremely
long, A ~ 0(102u,/p) AU, this requirement is easily satis-
fied, i.., the typical spacing between particles is ~N /2
where N = /M is the surface number density of objects of
mass M. QB, objects have masses of order 10~ ¢ My; for
this mass, AN'? ~ O(10%)(us/ug)*?>. If the bulk of the
material is in smaller objects, R < 100 km, there is an addi-
tional factor of (10> km/R)*/2.

3.6. Secondary’s Orbit

The reaction torque, T, = — T = r¢’%/4G, on the second-
ary can have important effects on its orbit (see, e.g.,
Goldreich & Tremaine 1980). The secondary’s angular
momentum and energy are L = M, a2Q(l — e?)'/?
and E = —M(a,Q)%/2. Differentiating with respect to
time and rearranging yields d/a,= —E/E and éj/e, =
—e; (1 — e)V*(L/L + E/2E), where L = T,. Since a wave
potential appears stationary in a reference frame rotating at
its pattern speed, the rates of change are related by E =
Q, L, by virtue of the Jacobi constant. From this, semi-
major axis and eccentricity variation rates can be derived:

2’1; st & _ - T.; st 1 e2
MsasZQs Qs ’ es_MseszasZQs Qs A
(38)

Substituting the torque and pattern speed, g,, for the secular
resonance in the equation for e, yields

as
as

_ 9
—rdg/dr

Q
~ —1.664, s g—s , (39)

s

s T
Lol 2 progirinel

s sec

and the eccentricity decays. From equation (38), it follows
that the ratio |é/e|/| a,/a,| = [Q/Q, — (1 — €2)/*]/2e} ~
Q,2e2g, > 1, so that the semimajor axis changes little
during the decay of the eccentricity.

Equation (39) should be compared with the excitation
rate from Lindblad resonances,

1 de, mi 19 4 4\ ?
e, dt], ~ T2n Mt QS[T K1<§> > K"(i)]
a

4
~ 0.048p, 1 QS<E> (40)
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FiG. 6.—Surface density perturbation in an n =2 disk for an one-
armed trailing apsidal wave generated in an extended Kuiper belt by a
secondary at 30.1 AU with normalized disk and secondary masses compa-
rable to Neptune’s mass. The white circle indicates the resonance site at
39.1 AU. Crests of the waves are white; the grayscale is stretched to reveal
the contrast. The surface density amplitude can be found from eq. (43). The
first wavelength is ~75 AU, in agreement with the u,/u, = 1 curve of Fig.
5, and decreases as r~ /2, These waves are predicted to become nonlinear
at ~330 AU, which is near the edge of the plot.

(Goldreich & Tremaine 1980; Ward 1988), where m,_,, is the
highest order Lindblad resonance falling in a disk with an
inner edge a distance Ar =r, —a, from the secondary.
Unlike (é/e)..., equation (40) falls off rapidly as Ar is
increased. Thus, Lindblad resonances cannot prevent the
decay of the eccentricity if the distance to the inner edge
exceeds Ar ~ 0.4ag,/Q)"* ~ 0.04a, ~ 1.2 AU, which is
comparable to the edge of the chaotic zone. When the
secular resonance dominates, e, decays with a characteristic
timescale of 7,..,, ~ 5.2 X 10°u/u, yr, and the disk torque
on the secondary quickly damps its orbital eccentricity.®

4. DISCUSSION

Figure 6 plots the perturbed surface density for u,/u, = 1,
found from the WKB solution to Poisson’s equation for ¢':
’__ i d 1/2 47
7 = 26 dr ¢ @4
(e.g., Goldreich & Tremaine 1978, 1980). The long wave-
length keeps the response linear at launch because nonlin-
ear forcing only occurs when e,,, = A,/r (see, e.g., HWR), for
which p,/u, < 0(10~2). For larger disks, the forcing at reso-
nance is linear.
Nonlinearity can develop downstream if the waves wind
up and/or the surface density drops sufficiently. The frac-
tional perturbation of the wave, ¢'/o, is found from the

° Actually, the torque from an interior secular resonance would excite
the eccentricity (Hahn & Ward 1998), but here we assume that the interior
planetesimal disk has been swept up by planet formation by the time
Neptune forms.
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conservation of angular momentum luminosity
o[> mr¢? mnioy?
&L | =mn*Gr|—| = ~ 42
| £ =mn"Gr| 26 Zirapjar)l, “?

(Toomre 1964; Goldreich & Tremaine 1978), where the
right-hand side is to be evaluated at resonance. For our
Neptune model, the fractional density perturbation is

i:e q@n+ap2) [ Hs A S A A
4 00 32 ud,s Hst 8r as
3/2 2(n—1)
~ 1.1es< “S) agﬂ(l) . (43)
.ud,s as

For n=2, o¢'/c approaches wunity at rx
L.1e; Y2(uy o/us)**a,, which for e = 0.01, a, ~ 30.1 AU, and
Mas ~ ts reads r ~ 330 AU. Nonlinear waves may shock-
dissipate, depositing their energy and angular momentum
in remote regions of the disk. The large wavelengths of
apsidal waves may also render them detectable in extrasolar
disks. This issue is to be addressed in a follow-up paper
(Hahn & Ward 1998).

Long-term test-particle integrations have shown that
Neptune will eject bodies with g < 35 AU over timescales of
less than 10° yr (Duncan et al. 1995). The removal of test
particles with a < 35 AU is likely assisted by Neptune’s
mean motion resonances. However, it appears that the
mean motion resonances must play a lesser role in stirring
and depleting the more distant parts of a Kuiper belt com-
posed of test particles. The Jacobi constant for a particle at
an (m + 1):m mean motion resonance has the same form as
equation (4) but with 4 ~ 3(m + 1)?>/4 and C ~ 8mpu,/5 (e.g.,
Peale 1986), so the particle’s maximum eccentricity is

emax = (C/A)'? = 21p/m)' (1 + 1/m) =27
~ 0.05m~13(1 + 1/m)~ 23,

and its perihelion is g = a,[(1 + 1/m)*® — 0.05/m'/*] > 35
AU for all of the m < 3 resonances that lie beyond 35 AU.
Therefore, it appears that the g5 resonance is the most sig-
nificant in-plane perturbation exerted by Neptune in the
more distant parts of the Kuiper belt. In § 2, it was con-
firmed that the perturbations exerted on a massless test
particle at the gg resonance are sufficiently vigorous to
excite its eccentricity and lower its perihelion below 35 AU
for a range of semimajor axes. Consequently, this resonance
may act as a particle sink in the current Kuiper belt, since
nearby particles may diffuse into the resonance.

Although long-term test-particle integrations shed light
on the later behavior of the Kuiper belt, they appear less
credible for its earliest stage, when its mass may have been
much larger. The self-gravity of the disk cannot be ignored,
and the particles can respond in a collective (i.e., wave)
mode. At a secular resonance, the necessary conditions for
wave action are easily satisfied, and Neptune launches
apsidal waves that propagate outward into the Kuiper belt.
The wave response spreads Neptune’s torque over the col-
lective scale, resulting in significantly lower particle eccen-
tricites than predicted by the isolated particle treatment.
The particle motions are coherent and nested and do not
contribute to a dispersion velocity. Since test-particle simu-
lations do not consider particle-particle interactions, they
fail to account for this transport of density waves, and thus,
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the reliability of their findings is uncertain. For a secular
resonance at ~39 AU in a pu; X ., disk, particles acquire
insufficient eccentricities to have their perihelia within 35
AU of Neptune. Indeed, it seems problematic whether this
secular resonance could contribute significantly to the
depletion of the Kuiper belt in an early, high-mass stage,
unless it somehow acts in concert with other resonances in
an as yet unknown manner. This caveat may also apply to
other situations treated by test-particle integrations, such as
the depletion of the asteroid belt and of planetesimals
between the planets.

The lowest mass estimate of the primordial Kuiper belt
obtained via a test-particle simulation is given in Figure 8 of
Duncan et al. (1995), who require an initial number density
profile of n(r) ~ 3 x 10540 AU/r)*> particles AU ? to
account for the present flux of Jupiter-family comets into
the inner solar system. This implies an initial surface density
of ¢ ~ 0.06[R/(10 km)]® g cm ™2 or u,/p, ~ 0.7[R/(10 km)]?
at 40 AU, assuming a mass density of 1 g cm~3. Since the
bulk of these objects must be comet-sized, R is likely ~1-10
km. Inserting this disk mass into the discussion of § 3.5
shows that, even at the low end, the criteria for apsidal wave
propagation are marginally met, although the waves may
be nonlinear. Again, these models do not allow for the de-
focusing of the planet’s disturbance at resonance due to the
disk’s self-gravity, and, as a result, the erosion rates report-
ed in Duncan et al. (1995) may be overestimated.

A substantial disk is required by models in which the
giant planets migrate (e.g., Fernandez & Ip 1983, 1984,
1996, Malhotra 1995, 1996). For instance, Malhotra (1998)
estimates that ~ 35 M of disk material distributed between
the giant planets is necessary to expand Neptune’s orbit
such that Pluto is captured at a mean motion resonance
with its eccentricity pumped up to the observed value. If one
spreads this amount of disk material between the giant
planets as per an r~ 2 surface density distribution and then
extrapolates additional mass beyond Neptune’s orbit,°
then the inferred disk mass is u,/u, ~ 0.6.

A similarly massive primordial Kuiper belt has been pos-
tulated by Stern (1996a, 1996b), who prefers ~ 10-50 M of
material between 30 and 50 AU (i.e., u,/u, ~ 0.6-3 for an
r~2 surface density distribution) in order to collisionally
assemble ~100 km-sized QB,-type Kuiper belt objects
prior Neptune’s formation. In this scenario, Neptune forms

10 Although it should be said that extending the disk well beyond
Neptune is an additional assumption not required by the migration
hypothesis.
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after ~108-10° yr and is then presumed to stir up the disk
so much that further growth of QB,; objects is halted.
Although Neptune’s shorter wavelength Lindblad waves
will be shut off once the particles achieve that size,
Neptune’s apsidal waves still propagate. If this scenario is to
succeed, then it remains to be demonstrated whether
Neptune can actually stir up this massive disk in order to
shut off its apsidal waves, truncate particle growth at QB,
sizes, and also deplete the disk to its current low-mass state.

Neptune’s ability to erode a massive primordial disk is
further inhibited by the torque that the disk exerts upon the
planet. The torque between planet and disk is surprisingly
strong, because the long wavelengths allow the disk to
couple to the forcing potential over large distances. As a
result, Neptune’s eccentricity-damping timescale could be
quite short as compared with the age of the solar system,
which obviously contradicts Neptune’s finite (though curi-
ously low) eccentricity. One possible resolution to this
dilemma is that an extended, high-mass Kuiper belt beyond
50 AU does not exist and the drop-off in surface density past
Neptune is a remnant of the true edge of the primordial
planetesimal disk. Alternatively, sufficient erosion of the
disk beyond the secular resonance could shut down the
wave response. However, we have seen that collective
behavior may inhibit erosion, so a better treatment of this
problem, including Lindblad resonances, is needed. Still
another possibility is that waves reflect off the Q-barrier or a
real disk edge before damping and return their energy and
angular momentum to the resonance zone. At any rate, the
requirement that Neptune’s present eccentricity—or, more
precisely, the amplitude of the g; mode—be finite could be
used to place a rather stringent constraint on the mass and
distribution of the current Kuiper belt. This important topic
is addressed in another paper, viz., Ward & Hahn (1998).
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APPENDIX A
To calculate the effect of the wave potential on a particle’s precession rate, Gauss’s form of Lagrange’s equation is
employed:
daé 1—e? r )
R |

where fis the true anomaly, F, and F, are radial and azimuthal perturbation forces, respectively, and p = a(1 — e?). In the
tight-winding limit, | 0¢'/or | > (1/r)| 0¢’/00 |, which implies | F, | > | F,|, so we drop the second term and set

F, ~ Re [e V3-8 _qd¢'/dr)] . 45)

The wave potential satisfies equation (13). For a test particle at resonance D = 0, and the orbit-averaged contribution of the
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wave potential to the precession rate becomes
déo
dt

w

2ea’Q

cos (O — @) . (46)

Substituting for i reveals that equation (46) cancels the problematic e,/e term in equation (29).

APPENDIX B
The derivative of g is
dg 1 5 d
T = T a Us Qg oc5/2<§ +o I bgl,’z) . 47
From Brouwer & Clemence (1961),
d 1+ 4a o
o By =T s B - bk (48)
The ratio of Laplace coefficients is given by the continued fraction
b$, 5 o ad® ba® ca® do®
@)2:211—1—1—1—1—"'51’(3’2/)2 )
(Brouwer & Clemence 1961)witha = —%,b = %, ¢ = 1%, d = 3, etc. Combining and using equation (8) leads to
d 7 — 20p%) + 30
4 _ gt ). (50)

"o YT 21— W)

For « = 0.770, p%, = 0.874and T" = 9.11.
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