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ABSTRACT

The secular perturbations exerted by an inclined satellite orbiting in a gap in a broad planetary ring tend to excite
the inclinations of the nearby ring particles, and the ring’s self-gravity can allow that disturbance to propagate away in
the form of a spiral bendingwave. The amplitude of this spiral bendingwave is determined, as well as the wavelength,
which shrinks as the waves propagate outward due to the effects of the central planet’s oblateness. The excitation of
these bending waves also damps the satellite’s inclination I. This secular I damping is also compared to the inclination
excitation that is due to the satellite’s many other vertical resonances in the ring, and the condition for inclination
damping is determined. The secular I damping is likely responsible for confining the orbits of Saturn’s two known
gap-embedded moons, Pan and Daphnis, to the ring plane.

Subject headinggs: planets: rings

1. INTRODUCTION

Secular gravitational perturbations can play a significant role
in determining the global structure and the long-term evolution
of a disk-companion system. A well-known example is the cir-
cumstellar dust disk at � Pictoris, whose broad but gentle warp is
thought to be due to the secular gravitational perturbations ex-
erted by an unseen planetary system (Mouillet et al. 1997). Sec-
ular perturbations from an eccentric planet can also make a dust
disk appear lopsided (Wyatt et al. 1999). Secular perturbations
are those forces that are due to the time-independent part of a
companion’s gravitational potential, and such perturbations are
equivalent to the gravitational forces that arise when a perturber’s
mass is spread about its orbital ellipse (Murray & Dermott 1999).
Consequently, the long-term secular evolution of a disk-companion
system is conveniently modeled by treating it as a system of grav-
itating rings (Hahn 2003), an approach that will also be employed
here.

When the perturber’s orbit is eccentric or inclined, its secular
perturbations can excite the orbital eccentricities or inclinations
of the disk particles, as well as cause the orbits of the disk par-
ticles to precess over time. Large eccentricities e or inclinations I
can also be excited at a secular resonance, which is a site where
the disk matter precesses in sync with one of the eigenfrequencies
that describe the perturber’s precession. However, substantial e’s
and I’s can also be excited elsewhere at nonresonant sites in the
disk, with greater excitation occurring nearer the perturber. In fact,
it is these nonresonant secular perturbations of the disk that are the
focus of this study.

If the disk has internal forces, such as pressure or self-gravity,
then those internal forces can also transmit the companion’s dis-
turbances across the disk. For instance, an inclined planet or-
biting in a circumstellar gas disk can excite a global warp that
is facilitated by the disk’s internal pressure (Lubow & Ogilvie
2001). And if an eccentric companion inhabits a gap in the gas
disk, its secular perturbations can launch a density wave at the
gap edge having such a long wavelength that a global standing
wave emerges (Goldreich & Sari 2003). But if the disk is instead
gravity-dominated, then the companion can launch spiral density
or spiral bendingwaves at its secular resonances in the disk (Ward

& Hahn 1998, 2003). These phenomena are also relevant to stud-
ies of extrasolar planets, since any dissipation in the disk facilitates
a transfer of angular momentum between the disk and the com-
panion in amanner that tends to drive its eccentricity or inclination
to zero.
The following will examine the secular evolution of a related

system: a small satellite that inhabits a narrow gap in a broad plan-
etary ring, both of which are orbiting an oblate central planet. It
will be shown below that an inclined satellite can launch a spiral
bending wave that propagates outward and away from the gap’s
outer edge. The amplitude and wavelength of this spiral bending
wave is assessed below, as well as the rate at which this wave
action damps the satellite’s inclination. This secular inclination-
damping mechanism is then compared to the inclination excita-
tion that is due to the satellite’s many other vertical resonances in
the ring (e.g., Borderies et al. 1984). We then quantify when this
secular damping dominates over the resonant excitation and show
that this secular interaction is likely responsible for confining
Saturn’s two known gap-embedded moons, Pan and Daphnis,
to the ring plane.

2. EQUATIONS OF MOTION

Begin by considering a planetary ring that is perturbed by a sin-
gle satellite, with both orbiting an oblate planet. To assess the dis-
turbance that the satellite might launch in this ring, the Lagrange
planetary equations will be used; they give the rates at which a
ring particle’s orbital inclination I and longitude of ascending
node � vary with time t,

İ ’ � 1

na2I

@R

@�
; �̇ ’ 1

na2I

@R

@I
; ð1Þ

whereR is the disturbing function for a ring particle having a semi-
major axis a and mean motion n ’ (GM /a3)1/2, G is the gravi-
tation constant, M is the mass of the central planet (Murray &
Dermott 1999), and all inclinations are small, IT1. The total
disturbing function for a ring particle is R ¼ Rdisk þ Rsat þ Robl,
where the three terms account for the gravitational perturbations
that are due to the ring’s gravity (which we treat here as a broad
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disk), the satellite’s perturbations, and the planet’s oblate figure.
The particle’s equations of motion is thus the sum of three parts,

İ ¼ İ

���
disk

þ İ

���
sat
; �̇ ¼ �̇

���
disk

þ �̇
���
sat
þ �̇

���
obl
; ð2Þ

noting that oblateness does not alter inclinations. And because
we are only dealing with the system’s secular perturbations, the
semimajor axes of all bodies are constant (Brouwer & Clemence
1961).

The amplitude of a spiral bendingwave that is in a steady state
does not vary with time, so the disk inclinations obey İ(a) ¼ 0
throughout the disk. A persistent spiral pattern must also rotate
with a constant angular velocity !, so

İ

���
disk

¼ �İ

���
sat
; ð3Þ

! ¼ �̇
���
disk

þ �̇
���
sat

þ �̇
���
obl

¼ const: ð4Þ

Section 2.1 will use the first equation to solve for the wave am-
plitude I (a) throughout the disk. Section 2.2 will then use the
other equation to solve for the bending waves’ dispersion rela-
tion !(k), which in turn provides the wavenumber k of the spiral
bending wave, and the wave’s radial velocity.

2.1. Wave Amplitude

We begin by examining how the planetary ring perturbs itself.
The ring is to be regarded as a broad disk that is composed of
many narrow, concentric annuli. Each annulus has mass �m(a),
inclination I(a), and longitude of ascending node �(a), all of
which are to be regarded as functions of the rings’ semimajor axes
a. For the moment we will assume that all rings are circular, not-
ing that we will deal with the system’s eccentricity evolution in a
follow-up study (J. M. Hahn 2007, in preparation). Suppose that
the annulus at a is perturbed by another annulus of mass �m0 and
radius a0; the disturbing function for the perturbed annulus is

�R ¼ � G�m0

4a
�b̃(1)

3=2(�)
1

2
I 2� II 0 cos (�� �0)

� �
; ð5Þ

where a, I, and � are the orbit elements of the perturbed an-
nulus, and the primed quantities refer to the perturbing annu-

lus (Hahn 2003). The softened Laplace coefficient appearing
in the above is

b̃
(1)

3=2(�) ¼
2

�

Z �

0

cos (’)d’

½(1þ �2)(1þ h
2
)� 2� cos ’�3=2

; ð6Þ

and it is a function of the semimajor axis ratio � ¼ a0/a, where
h ¼ h/aT1 is the disk’s vertical scale height h in units of semi-
major axis a. Note that when the disk is infinitesimally thin, h ¼ 0
and the disturbing function �R is equivalent to that due to a point
mass �m0 (e.g., Brouwer & Clemence 1961).

It will be convenient to replace the ring mass �m0 with
2��0a0 da0, where �0 ¼ �(a0 ) is the mass surface density of the
annulus of radius a0 and radial width da0. We will also write its
semimajor axis as a0 ¼ a(1þ x0 ), where x0 ¼ (a0 � a)/a ¼ ��1
is the fractional distance between the perturbing ring a0 and the
perturbed ring a. For the moment we will consider a one-sided
disk—one that orbits wholly exterior to the satellite, where� is
the fractional distance between the satellite’s orbit and the disk’s
inner edge; the geometry is sketched in Figure 1. The disturbing
function for ring a due to perturbations from ring a0 can now be
written as

�R ¼ � 1

2
�0
d(na)

2b̃
(1)

3=2(x
0 )

1

2
I 2 � II 0 cos �� �0ð Þ

� �
dx0; ð7Þ

where �0
d � ��0a02/M is the ring’s so-called normalized disk

mass, dx0 ¼ da0/a is the perturbing ring’s fractional width, and
b̃
(1)
3/2(x

0 ) is shorthand for equation (6) evaluated at � ¼ 1þ x0.
Then according to equation (1), ring a0 will alter the inclination
of ring a at the rate

�İ ¼ � 1

na2I

@(�R)

@�
¼ 1

2
�0
dnb̃

(1)

3=2(x
0 )I 0 sin (�� �0 )dx0: ð8Þ

2.1.1. Ring-Disk Evolution

The total rate at which the entire disk alters the inclination of
ring a is the above with x 0 integrated across the disk, from�x to
+1 (see Fig. 1), so

İ

���
disk

¼
Z
disk

�İ ¼ 1

2
n

Z 1

�x

�0
d(x

0 )b̃
(1)

3=2(x
0 )I 0(x0 ) sin (�� �0)dx0:

ð9Þ

Fig. 1.—Schematic showing the geometry of the ring-satellite system, seen edge-on. A satellite of massms and semimajor axis as orbits interior to a broad planetary
ring that extends to infinity. The satellite’s distance from the ring’s inner edge is � in units of the satellite’s semimajor axis as. A perturbed annulus in the ring has
mass �m, and it lies a fractional distance x away from the ring’s inner edge, while the perturbing ring has mass �m0 and lies a fractional distance x 0 from the perturbed
ring.
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As one might expect, this integral is dominated by the con-
tributions from nearby annuli that lie a small distance x 0 away.
In the jx0jT1 limit, the softened Laplace coefficient is (Hahn
2003)

b̃
(1)

3=2(x
0 ) ’ 2

�
�
x02 þ 2h2

� : ð10Þ

Because of the steep dependence of b̃
(1)
3/2 on x0, we can replace

the inclination I 0(x0 ) and disk mass �0
d(x

0) with their values eval-
uated at the perturbed ring at x 0 ¼ 0, so I 0 ’ I and �0

d ’ �d ¼
��a2/M , and also pull them out of the integral so that

İ

���
disk

’ �dIn

�

Z 1

�x

sin �� �0(x0)½ �
x02 þ 2h

2
dx0: ð11Þ

Most of the contributions to this integral will be due to nearby
annuli that lie a wavelength k ’ 2�/jkj away, where k is the wave-
number of the spiral bending wave.

A spiral wave has a wavenumber k(a) ¼ �@�/@a (eq. [A2]),
so the �� �0 in the above is

�(a)� �0(a0 ) ¼ �
Z a

a 0
k(r)dr: ð12Þ

In general, the wavenumber k(a) will vary with semimajor axis a.
However, considerable progress can be made if we assume that k
is constant over a wavelength, so �� �0 ’ �k(a� a0 ) ¼ kax 0.
Then equation (11) becomes

İ

���
disk

’ 1

�
AH (jkjax)�d Ikan ð13Þ

after replacing the x0 integration variable with y ¼ jkjax0 and not-
ing that equation (11) is odd in y. In the above, the function A(z)
is a dimensionless measure of the warped disk’s perturbation of
itself,

AH (z) �
Z 1

z

sin y

y2 þ H 2
dy; ð14Þ

where z ¼ jkjax is the distance from the ring edge in units of 2�
wavelengths and the dimensionless wavenumber H �

ffiffiffi
2

p
hjkja

is roughly the disk’s vertical thickness in wavelength units. The
function AH (z) is also plotted in Figure 2. We will be interested
in a disk whose vertical thickness is small compared to the wave-
length, so HT1, and AH (z) ’ sin (z)/z� Ci(z), where Ci(z) is
the cosine integral of Abramowitz & Stegun (1972). Also keep in
mind that these results assumed that thewavenumber k varies little
over a single wavelength; x 2.2.2 will note when this approxima-
tion breaks down.

2.1.2. Ring-Satellite Evolution

The ring at semimajor axis a is also being perturbed by the sat-
ellite, and that ring’s disturbing function Rs due to the satellite is
equation (5) with �m0 replaced by the satellite’s mass ms,

Rs ¼ � 1

4
�s(na)

2�b̃(1)
3=2(�)

1

2
I 2 � IIs cos (�� �s)

� �
; ð15Þ

where �s ¼ ms/M is the satellite’s mass in units of the central
planet’s mass and � ¼ as/a ¼ (1þ�þ x)�1 ’ 1� (�þ x).

The satellite’s perturbation thus causes the ring’s inclination to
vary at the rate

İ

���
sat

¼ � 1

na2I

@Rs

@�
¼ 1

4
�sn�b̃

(1)

3=2(�) Is sin (�� �s): ð16Þ

For a ring in the wave-excitation zone, i.e., near the satellite,

�b̃(1)
3=2(�) ’

2

�(xþ�)2
; ð17Þ

since the ring lies a fractional distance xþ� away from the sat-
ellite (see Fig. 1), with both presumably well separated such that
�3 h. We also write the above longitude difference as�� �s ’
�kaxþ �o, where the angle �o allows for the possibility that the
annulus nearest the satellite at x ¼ 0 may have a longitude of as-
cending node that differs from the satellite’s node�s by angle �o.
Thus,

İ

���
sat
’ �s Isn

2�(xþ�)2
sin (�kaxþ �o) ð18Þ

is the rate at which the satellite alters a ring’s inclination.

2.1.3. Wave Amplitude

When the wave is in steady state, the two I-excitation rates,
equations (13) and (18), are balanced, which yields the amplitude
of the bending wave,

I(z)

Is
¼ jkja

2

�s

�d

sin (z� sk�o)

(zþ jkja�) 2AH (z)
; ð19Þ

where sk ¼ sgn(k) and z ¼ jkjax is the downstream distance
in units of 2� wavelengths. Far downstream, where z31, we

Fig. 2.—Functions z2AH (z) (from eq. [14], solid curve), BH (z) (eq. [24],
dashed curve),D(z) (eq. [33], solid curve), and S(jk0ja�) (eq. [38], dotted curve)
are evaluated numerically for a thin disk having H ¼ 0:01. These curves are plot-
ted vs. z ¼ jkjax, which is the dimensionless distance from the ring’s inner edge in
units of 2� wavelengths, or vs. the dimensionless wavenumber jk0ja�. The D(z)
function is evaluated with jkja� ¼ 0:37, a value that is justified in x 2.2.2. The av-
erage of D(z) over the first wavelength, 0 � z � 2�, is D̄ ’ 0:87. Note also that
z2AH (z) ’ cos z after the first wavelength.
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expect I(z) ! const. For z31, Ci(z) ’ sin (z)/z� cos (z)/z2 þ
O(z�3) (Abramowitz&Stegun 1972), soAH (z) ’ cos (z)/z2 down-
stream; see Figure 2. So if I(z) is to be a finite constant, then
the longitude offset must be �o ¼ ��/2, and I /Is ’ �(jkja /2) ;
(�s/�d)sk sin �o. Of course, these inclinations must also be posi-
tive, so sin �o ¼ �1 ¼ �sk , and the bending wave amplitude
becomes

I

Is
’ jk0ja�s

2�d

; ð20Þ

where jk0j is the initial wavenumber at x ¼ 0, where the wave is
excited at the disk’s inner edge. To make further use of this re-
sult, we still need the initial wavenumber k0, which we get from
the waves’ dispersion relation.

2.2. Dispersion Relation

The waves’ dispersion relation is obtained from equation (4),
with each term in that equation assessed below. The first term,
�̇jdisk, is the rate at which the disk drives its own precession.
Again, we calculate that rate by treating the disk as numerous nar-
row annuli. The rate that annulus a precesses due to the secular
perturbations from the annulus at a0 is

��̇ ¼ 1

na2I

@(�R)

@I

¼ � 1

2
�0
dnb̃

(1)

3=2(x
0) 1� I 0(x0 )

I
cos (�� �0)

� �
dx0; ð21Þ

where �R is equation (7). The total precession rate due to the
disk’s self-gravity is �̇jdisk ¼

R
disk

��̇, where the integration pro-
ceeds across the entire disk. Again, the integrand is a steep func-
tion of x0, due to the softened Laplace coefficient, equation (10),
which allows us to replace the quantities I 0(x0 ) and�0

d(x
0 ) with the

constants I and �d . The disk’s precession rate due to its self-
gravity then becomes

�̇
���
disk

’� 2

�
�dn

Z 1

�x

sin2(jkjax0=2)
x02 þ 2h

2
dx0 ð22Þ

¼ � BH (jkjax)jkja�dn; ð23Þ

where

BH (z) ¼
2

�

Z 1

�z

sin2( y=2)

y2 þ H 2
dy: ð24Þ

The function BH (z) is a dimensionless measure of the rate at
which the disk drives its own precession. When the disk is much
thinner than the wavelength, H ¼

ffiffiffi
2

p
hjkjaT1 and

BH (z) ’
1

2
þ 1

�
Si(z)þ cos z� 1

�z
; ð25Þ

where Si(z) is the sine integral of Abramowitz & Stegun (1972).
Far downstream, where z ! 1, the BH integral evaluates to

B1
H � lim

z!1
BH (z) ¼

1

H
1� e�H
� �

: ð26Þ

Note that B1
H is maximal when the dimensionless wavenumber

is small, i.e., HT1, for which B1
H ’ 1. But if the disk is thick,

H 31 and B1
H ’ H�1, which indicates that the disk’s ability to

sustain a bending wave is weakened when the disk is too thick.

Figure 2 also shows a numerical evaluation of BH (z) for a thin
disk havingH ¼ 0:01. This figure shows that BH (z) takes values
of 1

2
� BH (z) � 1 for z � 0, with BH (0) ¼ 1

2
at the disk’s inner

edge, and that BH (z) ! 1 downstream, where z31 provided the
disk is thin.

The satellite is also precessing the ringmaterial orbiting nearest
it; that precession occurs at the rate

�̇
���
sat

¼ 1

na2I

@Rs

@I
¼ � 1

4
�sn�b̃

(1)

3=2(�) 1� Is

I
cos (�� �s)

� �

ð27Þ

’ � �s

2�(xþ�)2
þ �d sin (jkjax)

�jkja(xþ�)2

� �
n; ð28Þ

where Is/I is replaced by the downstream wave amplitude, equa-
tion (20). The first term is the familiar differential precession that
would occur if the disk were massless. The second term, which is
proportional to the disk mass �d , is the additional precession that
is due to the torque that the satellite exerts on the disk’s spiral
pattern.

The central planet’s oblateness is also driving precession; the
disturbing function for that perturbation is

Robl ’ � 3

4
J2I

2 Rp

a

� �2

(an) 2; ð29Þ

where J2 is the planet’s second zonal harmonic and Rp is the
planet’s radius (Murray & Dermott 1999). Precession due to
oblateness is then

�̇
���
obl

¼ 1

na2I

@Robl

@I
¼ � 3

2
J2

Rp

a

� �2

n ð30Þ

’ 1� 7

2
(xþ�)

� �
�̇s

���
obl
; ð31Þ

where equation (31) is a Taylor expansion of equation (30) in
the small quantity xþ�, �̇sjobl � �(3J2/2)(Rp/as)

2ns is the rate
at which the satellite’s orbit precesses due to oblateness, and ns
is the satellite’s mean motion.

Summing equations (23), (28), and (31) provides the dispersion
relation for the spiral bending waves,

! (jkj) ’� D(z)�djkjan�
�sn

2�(xþ�) 2

þ 1� 7

2
(xþ�)

� �
�̇s

���
obl
; ð32Þ

where

D(z) ¼ BH (z)þ
sin z

�(zþ jkja�) 2
: ð33Þ

All terms in equation (32) are negative, so the disk precesses in
a retrograde sense. Note that if a spiral bending wave is to per-
sist over time, then all parts of the disk must precess in concert.
The dispersion relation, equation (32), thus tells us how the wave-
number jk(x)jmust adjust throughout the disk in order for the spi-
ral bending wave to precess coherently.

The first term in the dispersion relation is due to the disk’s self-
gravity. That term is proportional to D(z), and it has two parts:
self-precession that is driven by the bending wave itself (the BH
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term D) and the additional precession that is driven by the satel-
lite’s torque on the spiral wave pattern (the latter term in eq. [33]).
The function D(z) is plotted in Figure 2, which shows that
1
2
� D(z) � 1.
The second term in equation (32) is the rate at which the sat-

ellite drives differential precession in the disk; this effect is most
prominent nearest the satellite. The third term is the rate at which
the oblate central planet drives differential precession, and this
occurs all throughout the disk. Differential precession can inhibit
wave action by shredding the spiral pattern. But inspection of the
dispersion relation suggests that bending waves can propagate,
despite differential precession due to the satellite, when the sat-
ellite’s mass is sufficiently small, i.e., when �sT�d jkja�2. The
dispersion relation also tells us that the wavenumber jkjmust also
increase with radial distance x in order to compensate for the addi-
tional differential precession that is due to the oblate central planet.

2.2.1. Group Velocity

Thewaves’ group velocity is (Toomre 1969;Binney&Tremaine
1987)

cg ¼
@!

@k
’ �sk�dan ð34Þ

upon setting D(z) ’ 1 downstream; this is the rate at which the
spiral bending wave propagates radially (Hahn 2003). Since the
satellite is launching outward-propagating waves from the disk’s
inner edge, the group velocitymust be positive, which implies that
sk ¼ sgn(k) ¼ �1. Spiral waves having k < 0 are called ‘‘lead-
ing’’ waves. Note also that sin �o ¼ �sk ¼ þ1, so �o ¼ �/2,
whichmeans that the longitude of the ascending node at the disk’s
inner edge leads the satellite’s node by 90

�
.

2.2.2. Wavenumber k

The wavenumber k can be obtained by calculating the satel-
lite’s precession rate �̇s. When the system is in steady state, both
the satellite and the spiral wave precess at the same rate, �̇s ¼
!(jkj), which provides another equation for the wavenumber k.

The satellite’s node �s is being precessed by the disk and by
the central planet, so

�̇s ¼ �̇s

���
disk

þ �̇s

���
obl
; ð35Þ

where �̇sjdisk ¼
R
disk

��̇s is the satellite’s precession rate due to
the entire disk and where

��̇s ¼ � 1

2
�0
dnsb̃

(1)

3=2(�þ x0) 1� I 0

Is
cos (�s � �0)

� �
dx 0 ð36Þ

is the satellite’s precession rate due to a disk annulus of radius a0

and mass �m0. This can be obtained from equation (21) with n,
a, I, and � replaced by ns, as, Is, and �s, respectively, and the
separation x0 ! x 0 þ�. The satellite’s precession rate due to
the entire disk is

�̇s

���
disk

¼
Z
disk

��̇s

’ � 1

�
�dns

Z 1

0

x 0 þ�ð Þ�2
1� I

Is
cos (kax0 � �o)

� �
dx0

ð37aÞ

’ � �dns

��
� �sns

2�� 2
S(jk0ja�); ð37bÞ

where

S(jk0ja�) � jk0a�j2
Z 1

0

sin ( y)dy

( yþ jk0ja�)2
: ð38Þ

The first term in equation (37b) is the rate at which the undis-
turbed disk precesses the satellite’s orbit. The second term is the
rate at which the bending wave, whose amplitude is proportional
to �s by equation (20), drives additional precession. The S func-
tion in that term is a dimensionless measure of the wave’s contri-
bution to the satellite’s precession rate; that quantity depends on
the wave’s initial wavenumber jk0j and is plotted in Figure 2,
which shows that 0 � S(jk0ja�) � 1.
Note that if the satellite instead orbited at the center of a nar-

row gap in the disk, then the first term in equation (37b) would be
doubled due to the disk matter orbiting interior to the satellite.
We might also expect additional precession to occur due to any
bending waves launched in this interior disk, but it will be shown
below that this contribution is unimportant. With this in mind,
we will generalize equation (37b) to account for a possible inner
disk by writing

�̇s

���
disk

’ � "�dns

��
� �sns

2��2
S(jk0ja�); ð39Þ

where it is understood that " ¼ 1 if the disk is entirely exterior
to the satellite and that " ¼ 2 if the satellite instead orbits in the
center of a gap whose fractional half-width is�. The satellite’s
total precession rate then becomes

�̇s ¼ �̇s

���
disk

þ �̇s

���
obl

¼ � "�dns

��
� �sns

2��2
S(jk0ja�)þ �̇s

���
obl
: ð40Þ

When the disk and satellite are in steady state, the satellite
and its spiral bending pattern precess in concert, so �̇s ¼ !(jkj),
which after some manipulation yields the dispersion relation

�D(z)jkja� ¼ "þ �c

�d

1þ x

�

	 

þ �s

2�d�
f (jk0a�j; z); ð41Þ

where

f (jk0a�j; z) ¼ S(jk0ja�)� jk0a�j2

(jk0a�j þ z)2
ð42Þ

is another function of distance z and wavenumber jk0j, one that
is restricted to the interval �1 � f � 1, and

�c �
21�

4

Rp�

as

� �2

J2; ð43Þ

which will be called the critical disk mass.

2.2.3. Limits on Wave Propagation

The disk’s ability to sustain these bending waves is assessed
by multiplying the dispersion relation from equation (41) byffiffiffi
2

p
h /��, which yields

HD ¼
ffiffiffi
2

p
h

��
"þ �c

�d

1þ x

�

	 

þ �s f

2�d�

� �
; ð44Þ

where the dimensionless wavenumber H ¼
ffiffiffi
2

p
hjkja. Far down-

stream, z31 and D(z) ¼ B1
H ¼ (1� e�H )/H (see eqs. [26] and
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[33]), soHD ¼ 1� e�H < 1. Wave propagation thus requires the
right-hand side of equation (44) to always be less than unity,
which places an upper limit on the thickness of a disk that is able
to sustain these bending waves, namely, that h < hmax, where

hmax �
��=

ffiffiffi
2

p

"þ (�c=�d)(1þ x=�)þ �s=2�d�
; ð45Þ

upon setting f ¼ 1 in order to obtain the most conservative limit
on the disk’s fractional thickness hmax.

The remainder of this paper will assume that the disk is thin
enough to sustain density waves, namely, that hThmax, or equiv-
alently thatHT1, so thatD � O(1). In addition, recall that x 2.2
anticipated a wave solution to occur when the satellite’s mass
is small. Specifically, when �sT2"�d�, the rightmost terms in
equations (41) or (44) may be neglected, which then provides the
wavenumber k as a simple function of distance x in the disk,

jkj ’ 1

�D̄a�
"þ �c

�d

1þ x

�

	 
� �
; ð46Þ

where D(z) has been replaced with its average value over the
first wavelength, D̄. And if the disk is sufficientlymassive, namely,
that�d k18�c /", then the initial wavenumber at x ¼ 0 is jk0ja� ’
"/�D̄ ’ 0:37, where " ¼ 1 and D̄ ’ 0:87 according to Figure 2.
In that limit, the first wavelength is k0 ¼ 2�/jk0j ’ 2�2D̄�a ’
17�a. However, shorter wavelengths will result when �d does
not exceed the above threshold.

Plugging equation (46) evaluated at x ¼ 0 into equation (20)
then yields the wave amplitude in terms of the system’s physical
parameters,

I(x)

Is
’ �s("þ �c=�d)

2�D̄�d�
: ð47Þ

2.2.4. Inclination Damping

The satellite launches a spiral bendingwave via its secular grav-
itational perturbations of the ring. Those perturbations tilt the or-
bital plane of the nearby ring particles, and they in turn tilt the
orbits of the more distant parts of the disk. Tilting an annulus in
the disk also tips that ring’s angular momentum vector, so the ex-
citation of a bending wave transmits in-plane angular momentum
from the satellite to the disk. Consequently, wave-excitation damps
the satellite’s inclination Is, and that rate can be calculated using the
Lagrange planetary equation for İs.

The rate �İs at which a single annulus in the disk damps the
satellite’s inclination Is is equation (8), again with n; a; I ;� !
ns; as; Is;�s and x0 ! x0 þ�. Integrating the contributions by
all annuli in the disk gives the satellite’s total inclination-damping
rate,

İs ¼
Z
disk

�İs ¼
�dIns

�k0a�
2
C(jk0ja�); ð48Þ

where k0 is the initial wavenumber at the disk’s inner edge and
the function

C(z) ¼ z2
Z 1

0

cos ( y)dy

( yþ z) 2

¼ zþ z2 Si(z)� �

2

h i
cos z� Ci(z) sin z

n o
ð49Þ

is shown in Figure 3. Inserting equation (20) into equation (48) and
noting that k0 ¼ �jk0j then provides the inclination-damping rate
in terms of the system’s physical parameters,

İs

Is
¼ � C(jk0ja�)

2�

�s

� 2
ns: ð50Þ

The reciprocal of the above gives the e-folding timescale for the
satellite’s inclination decay,

�i ¼
�2Porb

C(jk0ja�)�s

; ð51Þ

where Porb ¼ 2�/ns is the satellite’s orbit period. Note that for
a planet that is not too oblate (e.g., x 2.2.2) jk0ja� ¼ 0:37, so
C(jk0ja�)’ 0:24 (Fig. 3). This inclination-damping rate is also
confirmed below, in a numerical simulation of spiral bending
waves launched in a planetary ring.

3. SIMULATIONS OF SPIRAL BENDING WAVES

The rings model of Hahn (2003) will be used to confirm the
preceding results. The rings model treats the system as a set of
N discrete gravitating annuli having semimajor axes aj, inclina-
tions Ij, nodes �j, and half-thicknesses hj. The model only con-
siders the system’s secular gravitational perturbations, so it also
solves the same equations of motion, equations (2), but the model
does so without making any of the wave assumptions invoked in
x 2.1. The model thus provides an independent check of the ana-
lytic results obtained above.

3.1. Waves in an Exterior Disk

The rings model is used to simulate the spiral bending waves
that are launched by an inclined satellite that orbits just interior to
a disk. Figure 4 shows the amplitude of this bending wave as it
advances across a disk. The system’s parameters are detailed in
Figure 4. Those parameters do not correspond to any real ring-
satellite system; rather, these parameters were chosen to illustrate

Fig. 3.—Function C(jk0ja�) from eq. (49) plotted vs. the dimensionless wave-
number jk0ja�.

SECULAR EVOLUTION OF CLOSE RING-SATELLITE SYSTEM 861No. 1, 2007



the results of x 2 in the limit in which those results were obtained,
namely, that the satellite’s mass is small, i.e., �sT2�d�, so that
equation (46) is valid. Those parameters were also chosen so that
the factor �c/�d appearing in the wavenumber equation (46) is
0.2, which causes the wavelength to slowly decrease with dis-
tance x as the waves propagate away. Nonetheless, the simulation
reported in Figure 4 does correspond loosely to a small �10 km
satellite orbiting just interior to the ring whose surface density is
similar to Saturn’s main A ring.

Inspecting this system’s angular momentum provides a quick
check on the quality of this calculation. This system should con-
serve the in-plane component of its total angular momentum,
Li ¼ 1

2

P
mjnja

2
j I

2
j , where the sum runs over all rings and sat-

ellites in the system (Hahn 2003). The single-precision calcu-
lation shown in Figure 4 conserves Li with a fractional error of
j�Li/Lij < 2 ; 10�5.

Note that the time for these waves to propagate a fractional
radial distance x ¼ �r/a is

tprop ¼
�r

cg
¼ xPorb

2��d

; ð52Þ

where cg is the waves’ group velocity, equation (34). The sim-
ulated disk has a normalized mass of �d ¼ 5 ; 10�8 and a frac-
tionalwidth x ¼ 0:02, so the anticipated propagation time is tprop ¼
64 ; 103 orbits, which compares favorablywith the simulation (see
Fig. 4).

If the disturbance seen in Figure 4 is indeed a spiral bending
wave, then the disk’s longitude of ascending node �(a) should

steadily advance as a increases across the disk. This is confirmed
in Figure 5, which shows thewaves’ longitudes relative to the satel-
lite’s,�(a)� �s. These are also the longitudes where the warped
disk passes through the central planet’s equatorial plane. Note that
this disk will have its maximum elevation at longitudes 90� ahead
of that seen in Figure 5, with its minimum elevation at lon-
gitudes 90

�
behind. Note also that the longitude of the disk’s inner

edge is 90� ahead of the satellite’s longitude, as expected. And
since thewavenumber k ¼ �@�/@a is negative, this spiral pattern
is indeed a leadingwave.We also note that once the bendingwave
is established in the disk, the disk’s longitudes precess at the same
rate as the satellite’s, i.e., �̇(a) ¼ �̇s, and that the disk’s inclina-
tions are constant, İ(a) ¼ 0, which justifies our steady state as-
sumptions, equation (3).
Figure 5 also plots the dimensionless wavenumber jkja� across

the disk at time t ¼ 75 ; 103. This is themomentwhen the bending
wave is just starting to reflect at the disk’s outer edge, which ac-
counts for the curve’s raggedness there. Also plotted is the ex-
pected wavenumber, equation (46), which compares favorably.
The rate at which the disk damps the simulated satellite’s in-

clination Is is shown in Figure 6, where it is compared to the ex-
pected rate, equation (50). That rate is calculated by noting that
the waves’ initial wavenumber is jk0ja� ’ 0:63 at the disk’s
inner edge (see Fig. 5), so the C that appears in equation (50) is

Fig. 5.—Top: Disk’s longitude of ascending nodes �(a) relative to the satel-
lite’s node �s, in units of �, for the simulation of Fig. 4 at time t ¼ 75 ; 103 or-
bits, when thewave has swept across the disk.Bottom: Dimensionlesswavenumber
jkja� at this moment, where wavenumber is calculated from k ¼ �@�/@a. Note
that the simulated curve gets a bit ragged at the disk’s outer edge,which is where the
bending wave is just starting to reflect. The dashed line is the expected wave-
number, eq. (46), with " ¼ 1. This spiral pattern has an initial wavenumber of about
jk0ja� ¼ 0:63 at the disk’s inner edge.

Fig. 4.—Rings model is used to simulate bending waves launched by an in-
clined satellite that orbits just interior to a disk. The satellite’s normalized mass
is �s ¼ 10�12, and the disk is comprised of N ¼ 500 rings having semimajor
axes distributed over 1þ� � aj/as � 1:02, where� ¼ 5 ; 10�4 is the fractional
distance between the satellite and the innermost ring. The rings’ fractional masses
are�r ¼ 3:9 ; 10�12, so the normalized diskmass is�d ¼ ��r 2/M ¼ �r/2(�/as) ¼
5 ; 10�8, where the rings’ fractional separations are �/as ¼ 0:02/N ¼ 4 ; 10�5.
The rings’ fractional half-widths h are also set equal to their separations �/as. The
central planet’s zonal harmonic is J2 ¼ 0:012 and the planet’s radius is Rp/as ¼
0:45, so the system’s critical disk mass is �c ¼ 1:0 ; 10�8 and �c/�d ¼ 0:2. The
satellite’s initial inclination is sin Is ¼ 10�5, with all other rings initially having
zero inclinations. The curves show the fractional amplitude of the bending wave,
I (a)/Is, as it advances across the disk, shown at selected times t in units of 103 or-
bital periods. The dashed line is the expected wave amplitude, eq. (47), with " ¼ 1.
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C(jk0ja�) ¼ 0:32, according to Figure 3. The expected and ob-
served inclination-damping rates are in good agreement.

3.2. Satellite in a Gap

The simulation described by Figures 4 and 5 is a bit of fiction,
since there are no known satellites orbiting just interior to a broad
planetary ring. For instance, all of the major Saturnian satellites
orbit exterior to Saturn’s main rings. However, there are two note-
worthy exceptions: the small satellite Pan, which orbits in the
Encke gap in Saturn’s A ring, and Daphnis, which inhabits the
Keeler gap in Saturn’s A ring (Porco 2005).

A simulation of an inclined Pan as it orbits in the Encke gap is
reported in Figure 7, which shows the state of this system at time
t ¼ 7:5 ; 104 orbits. This is the time required for Pan to launch a
leading spiral bending wave at the gap’s outer edge that then prop-
agates to the simulated ring system’s outer edge. Figure 7 shows that
waves’ initialwavelength isk0 ¼ 0:0037as ’ 500 kmand that their
wavelength shrinks with distance x as they propagate toward the
outer edge of the A ring, which lies a fractional distance x ¼ 0:024
away. So if these waves are not otherwise damped en route by col-
lisions among ring particles, their wavenumber will have grown to
jkja ’ 1:1 ; 104 when they reach the A ring’s outer edge (see
eq. [46]),which corresponds to awavelengthofk¼ 2�/jkj’ 80 km.

Figure 8 also shows the system at the later time t ¼ 1:5 ;
105 orbits, which is when the wave has since been reflected at the
simulated ring’s outer edge and returned to the launch site. Here
we see the superposition of an outbound leading wave with an
inbound trailing wave, which results in a standing bending wave
throughout the disk. As the figure shows, when the standing wave
emerges, it arranges the disk’s longitudes � such that they alter-
nate between �90

�
and +90

�
of the satellite’s node �s at every

half-wavelength. So if the waves launched by an inclined Pan do
not get damped downstream, that bending wave will reflect at the
outer A ring and return to Pan’s vicinitywhere it can communicate
its in-plane angular momentum back to the satellite. At this mo-
ment, inclination damping then ceases.

Figures 7 and 8 also show that Pan does not launch any inward-
propagating waves. Although the satellite’s secular perturbations

do excite inclinations at the gap’s inner edge, those disturbances
do not travel further inward. The wavenumber jkj for any distur-
bance that might propagate in the interior disk is1

jkj ’ 1

�D̄aj�j
"� �c

�d

1þ x

�

��� ���	 
� �
; ð53Þ

Fig. 7.—Simulation of spiral bending waves launched by an inclined Pan or-
biting in the Encke gap in Saturn’s A ring. Figures show the disk inclinations
I (a)/Is and relative longitudes�(a)� �s plotted vs. semimajor axis a at time t ¼
7:5 ; 104 orbits, which is the time it takes the spiral bending wave to propagate
across the simulated ‘‘disk.’’ Note that the simulated disk is actually quite nar-
row, since it only extends over 0:99 � a/as � 1:02. The system parameters are
Pan’s mass �s ¼ 8:7 ; 10�12 (Porco et al. 2005), semimajor axis as ¼ 1:34 ;
105 km, inclination sin is ¼ 10�5, with an A ring surface density � ¼ 50 g cm�2

(Rosen et al. 1991) and a normalized disk mass of �d ¼ ��a2s /M ¼ 5 ; 10�8.
The gap half-width is �as ¼ 160 km (Burns et al. 2005), so its fractional half-
width is � ¼ 0:0012. N ¼ 500 rings are used to simulate the wave in the disk
exterior to the satellite, while 50 rings are used to resolve the disturbance in the
interior disk. The rings’ fractional half-widths h are set equal to their separations.
Saturn’s second zonal harmonic is J2 ¼ 0:0163 and the planet’s radius is Rp ¼
0:45as, so the system’s critical disk mass, eq. (43), is �c ¼ 7:8 ; 10�8.

Fig. 6.—Rate at which the satellite launching the wave in Fig. 4 has its in-
clination damped, İs, plotted vs. time t (in units of orbit periods). The solid gray
line is the expected rate from eq. (50) assuming jk0ja� ¼ 0:63 andC(jk0ja�) ¼
0:32, where C is obtained from Fig. 3.

1 This wavenumber is obtained by repeating the derivation of x 2 by apply-
ing that to an annulus in the inner disk whose semimajor axis is again a ¼ as(1þ
xþ�), but with the distances x and � now understood as having negative val-
ues. So when integrating the net perturbation that the entire disk exerts on an an-
nulus, the integration variable x0 in eqs. (9) and (22) now runs over �1 � x0 �
�x. The net effect of this is to merely change the sign on certain terms: İdisk is
�1 ; eq. (13) and sk ¼ sgn(k) ¼ sin �i ¼ þ1, where �i ¼ �/2 is the longitude
offset between the inner gap edge and the satellite. Any inward-propagating waves
in the inner disk are trailing, since k > 0. The argument of the sinusoid in eq. (28)
also changes sign. Accounting for these sign changes then yields eq. (53).
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which is identical to equation (46) except for the sign on the disk
mass term. Since the right-hand side must be positive, equa-
tion (53) tells us that waves in the inner disk can only propagate
in the zone where jxj < xin, where

xin �
"�d

�c

�1

� �
j�j ð54Þ

is the distance of the waves’ maximum excursion inward of
the satellite’s orbit. Getting waves to propagate inward a signifi-
cant distance thus requires the disk mass to be sufficiently high,
namely, �d 3�c/2, where " ¼ 2 for a gap-embedded satellite.
Saturn’s A ring has a disk mass of �d � 5 ; 10�8 and a critical
disk mass of �c ¼ 7:8 ; 10�8 (from Fig. 7 legend), so �d 3
�c/2 is not well satisfied, and inward-propagating bending waves
are precluded.

In addition, note that this simulation does not satisfy �d k
18�c/", which means that the wavenumber k varies substantially
across that first wavelength (see eq. [46]). Awavenumber that is
nearly constant over that first wavelength is of course a key as-
sumption of xx 2 and 3, so the analytic results obtained theremight
seem not apply to Pan. Nonetheless, when those formulas are
compared to the model results, we find equation (46) to be in ex-
cellent agreement with thewavenumber k(x) exhibited by the sim-
ulatedwave. But equation (47) does overestimate the amplitude of

this simulated wave by a factor of�4, which in turn causes equa-
tion (50) to overestimate Pan’s inclination-damping rate by the
same factor.
However, Daphnis inhabits the narrower Keeler gap, whose

fractional half width� ¼ 1:1 ; 10�4 is a tenth that of the nearby
Encke gap, so its �c is 100 times smaller, and xin ’ 120j�j ¼
0:013,which corresponds to a physical distance of xinas ’ 1800 km,
or about 10 wavelengths. So when the rings model is used to
simulate the spiral waves that an inclined Daphnis would launch,
we do indeed see a wave launched from the gap’s inner edge.
That wave propagates inward approximately a distance xin, where
it reflects and propagates outward and across the Keeler gap. That
satellite’s simulated I-damping timescale is also in good agree-
ment with the prediction, equation (51).

4. EXTERNAL VERTICAL RESONANCES

A satellite orbiting near a planetary ring also excites inclina-
tions at its many external vertical resonances in the ring. This also
communicates in-plane angular momentum between the satellite
and the ring, but in a manner that excites the satellite’s inclina-
tion Is. Borderies et al. (1984) calculate the rate at which the ex-
ternal resonances in a narrow ring ofmass �m0 excite the satellite’s
inclination,

�İs ¼ g�snsjx0j
�5 �m

0

M
Is; ð55Þ

where g ¼ 0:0118 and x0 is the satellite’s fractional distance from
the ring ofmass �m0 ¼ 2��a2 dx 0. The satellite’s total I-excitation
rate is the above integrated across the entire disk, İs ¼

R
disk

�İs. If
the satellite orbits in the center of a gap in a broad planetary ring, the
total excitation rate due to external vertical resonances is (Ward &
Hahn 2003)

İs

Is
¼ g�s�dns

�4
: ð56Þ

So if the satellite’s orbit is to remain confined to the ring plane,
this I-excitation due to the satellite’s external resonances must
be smaller than the I-damping that results from its secular inter-
action with the ring, equation (50). Comparing these two rates
shows that the satellite’s inclination is stable, i.e., İs < 0, when
its gap is sufficiently large, namely, when

� 2 >
2�g�d

C(jk0ja�)
: ð57Þ

Bending waves launched by Pan andDaphnis have initial wave-
numbers of jk0ja� ’ 1 (see eq. [46]), so C(jk0ja�) ’ 0:3 (see
Fig. 3), and the requirement for inclination damping becomes
�k 0:5(�d)

1/2. These satellites inhabit Saturn’s A ring, which
has a normalized disk mass of �d ’ 5 ; 10�8, so their inclina-
tions are stable if their gap half-widths are wider than�k1:1 ;
10�4. Pan easily satisfies this requirement (� ¼ 0:0012), while
Daphnis marginally so (� ¼ 1:1 ; 10�4). The I-damping time-
scale for Pan is quite short, only �i ’ 1:7 ; 106 orbits (e.g.,
4 times eq. [51]), which corresponds to �i ’ 2700 yr. A com-
parable I-damping timescale is also obtained for Daphnis, whose
size is about 4 times smaller than Pan’s (Spitale et al. 2006) and
whose gap is 10 times narrower.

5. SUMMARY AND CONCLUSIONS

The secular perturbations exerted by an inclined satellite orbit-
ing in a gap in a broad planetary ring tend to excite the inclinations
of the nearby ring particles. The ring’s self-gravity then allows

Fig. 8.—State of the system described in Fig. 7 at the later time t ¼ 1:5 ;
105 orbits, which is when the bending wave has reflected at the simulated disk’s
outer edge and returned to the launch site, thereby establishing a standing wave
in the disk. The fractional error in this system’s total angular momentum is
j�Li/Lij < 5 ; 10�5.
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that disturbance to radiate away in the form of a spiral bending
wave. The wavelength k ¼ 2�/jkj of any outbound waves is ob-
tained from equation (46), which shows that k decreases with dis-
tance x from the nearby gap edge. Thesewavelength variations are
due to a competition between the disk’s self-gravity and the dif-
ferential precession that is due to the oblate central planet. As an
example, we find that an inclined Pan, which inhabits the Encke
gap in Saturn’s main A ring, would excite a bending wave having
an initial wavelength of about 500 km. And if that wave manages
to propagate out to the outer edge of the A ring without damping,
the wavelength will then have shrunk down to about 80 km there.

A gap-embedded satellite will also try to launch a wave at the
gap’s inner edge, but the range of these waves is limited by how
far they can propagate until their wavenumber has shrunk to zero;
see equation (53). That distance is controlled by the width of the
gap, with a narrower gap resulting in a greater inward excursion;
see equations (54) and (43). For instance, Pan is unable to launch
an inward-propagating wave, while Daphnis, which inhabits the
narrower Keeler gap, could launch a disturbance that propagates
inward about 1% of its orbit before reflecting and propagating
back out and across the Keeler gap.

The amplitude of this wave is given by equation (47), and the
excitation of this wave also damps the satellite’s inclination quite
vigorously, at a rate given by equation (50). This I-dampingmech-
anism also competes with the satellite’s many other vertical res-
onances in the ring, which try to pump up the satellite’s inclination
(Borderies et al. 1984).However, the secular I-dampingwill dom-
inate when the satellite’s gap is sufficiently wide, namely, when
equation (57) is satisfied. Saturn’s gap-embeddedmoon Pan satis-
fies this requirement, while Daphnis is at the threshold. This sec-
ular phenomenon also damps inclinations on a very short timescale
�i, which for these satellites is of order 3000 yr (eq. [51]). This of

course assumes that these waves damp somewhere downstream,
rather than reflecting at the ring’s outer edge and returning to the
launch site. But if these waves reflect and return without suffering
significant damping, then a standing wave will emerge in the disk.
That standing wave would also communicate some of its in-plane
angular momentum back into the satellite’s orbit, so further in-
clination damping would cease. But if these waves instead damp
downstream, then this secular phenomenon represents an impor-
tant stabilizing influence that tends to confine a satellite’s orbit to
the ring plane. But this inclination damping also shuts off any sub-
sequent wave generation, so is seems unlikely that these waves
might ever be observed in a planetary ring.

Finally, we note that the rings model employed here played an
important role in guiding the analytic results obtained above.
The model itself is a fairly easy-to-use set of IDL scripts, and
other applications of this code are possible. For instance, the rings
model has revealed that an eccentric satellite’s secular perturba-
tions can launch spiral density waves in a nearby ring, and the ec-
centricity damping that is associated with that phenomena will be
assessed in a follow-up study (J.M.Hahn 2007, in preparation). A
copy of the rings model algorithm will also be made available to
others on request.
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APPENDIX

The disk’s vertical displacement is z(a; 	; t) ¼ a sin I sin (	� �), where a and 	 are the radial and azimuthal coordinates in the disk,
respectively, and the inclination I and ascending node � should be regarded as functions of distance a and time t. When a spiral
bending wave is present in the disk, the longitudes have the form

�(a; t) ¼ �(a0; 0)�
Z a

a0

k(r)dr þ !t; ðA1Þ

where�(a0; 0) is the longitude of the ascending node at some reference distance a0 at time t ¼ 0, k(a) is the wavenumber of the spiral
bending wave, and ! is the angular rate at which the spiral pattern rotates, also known as the pattern speed. The signs in the above
expression are chosen to follow the convention that a k < 0 spiral is a ‘‘leading’’ spiral, which means that a curve having a constant
z(a; 	) in the disk traces a spiral that advances in 	 as a increases. Thus, the wavenumber k can be written as

k ¼ �@�=@a; ðA2Þ

and the group velocity is (Toomre 1969; Binney & Tremaine 1987)

cg ¼ @!=@k: ðA3Þ
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