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ABSTRACT

The Lagrange planetary equations are used to study secular evolution of a small, eccentric satellite that orbits
within a narrow gap in a broad, self-gravitating planetary ring. These equations show that the satellite’s secular
perturbations of the ring will excite a very long wavelength spiral density wave that propagates away from the gap’s
outer edge. The amplitude of these waves, as well as their dispersion relation, are derived here. That dispersion re-
lation reveals that a planetary ring can sustain two types of density waves: long waves that, in Saturn’s A ring, would
havewavelengths of k � O(100) km and short waves that tend to be very nonlinear and are expected to quickly damp.
The excitation of these waves also transports angular momentum from the ring to the satellite in a way that damps
the satellite’s eccentricity e, which also tends to reduce the amplitude of subsequent waves. The rate of eccentricity
damping due to this wave action is then compared to the rates at which the satellite’s Lindblad and corotation reso-
nances alter the satellite’s e. These results are then applied to the gap-embedded Saturnian satellites Pan and Daphnis,
and the long-term stability of their eccentricities is assessed.

Subject headingg: planets: rings

1. INTRODUCTION

The following considers the secular gravitational perturbations
that are exerted between a small eccentric satellite and a nearby
planetary ring. This investigation is also a followup to the study
described in Hahn (2007) which examined the secular evolution
of a small inclined satellite. There it was shown that the inclined
satellite would launch a very long wavelength spiral bending
wave at the ring’s nearby edge. Since the excitation of the bend-
ing wave also communicates in-plane angular momentum from
the satellite to the ring, that ring-satellite interaction resulted in
a very vigorous damping of the satellite’s inclination. A related
problem was also considered by Goldreich & Sari (2003), who
showed that an eccentric perturber orbiting in a gap in a pressure-
supported gas disk will launch density waves at the gap’s edge
having such a long wavelength that a global standing wave
emerges in the disk. The work described below considers a re-
lated but distinct problem, that of an eccentric satellite orbiting
in a narrow gap in a self-gravitating planetary ring. Here we
show that the secular perturbations from the eccentric satellite
also launches relatively long wavelength density waves at the
gap’s outer edge. The principal goal of this study will be to de-
rive the amplitude of these waves and their dispersion relation,
which in turn will yield other useful properties, such as the wave-
number and the waves’ group velocity. Since the mathematics of
this density wave problem is very similar to that already devel-
oped for bending waves, the derivations presented here will be
succinct. However, the reader interested in a more verbose de-
scription of a similar problem is referred to Hahn (2007).

Another goal of this effort will be to derive the rate at which
the satellite’s eccentricity e is altered by the excitation of these
density waves at the gap’s edge. This is of interest because the
satellite’s e also varies due to its many Lindblad resonances in
the ring, which tend to pump up the satellite’s e, while its many
corotation resonances in the ring tend to damp the satellite’s e
(Goldreich & Tremaine 1981, 1982). Although e-damping due
to the corotation torque can dominate over e-excitation from the
Lindblad torque, the long-term stability of the satellite’s eccen-

tricity is still uncertain since the corotation torque is operative
only when these particular resonances are not saturated. Our pur-
pose here is to determine whether the secular interaction de-
scribed below is also a stabilizing process that leads to a net
damping of the satellite’s eccentricity.

The following section begins with the Lagrange planetary
equations, which are used to derive the amplitude of these waves
and their dispersion relation. Section 3 then uses those results to
determine the rate at which the satellite’s eccentricity evolves in
response to the wave it launches at the gap edge. Those analytic
results are then confirmed in x 4 via a numerical simulation of
these waves, with conclusions reported in x 5.

2. EQUATIONS OF MOTION

Consider a planetary ring that is perturbed by a single satellite,
with both orbiting an oblate planet. The Lagrange planetary
equations give the rates at which a ring particle’s orbital eccen-
tricity e and longitude of periapse !̃ vary with time t due to these
perturbations (Brouwer & Clemence 1961; Murray & Dermott
1999),

ė ’ � 1

na2e

@R

@!̃
; ˙̃! ’ 1

na2e

@R

@e
; ð1Þ

whereR is the disturbing function for a small ring particle having
a semimajor axis a and mean motion n ’ GM /a3ð Þ1/2, where G
is the gravitation constant andM is the mass of the central planet,
and all eccentricities are small, eT1. The total disturbing func-
tion for a ring particle is R ¼ Rdisk þ Rsat þ Robl, where the three
terms account for the gravitational perturbations that are due to
the ring’s gravity (which is treated here as a broad disk), the
satellite’s perturbations, and that due to the planet’s oblate fig-
ure. The particle’s equation of motion is thus the sum of three
parts,

ė ¼ ė
��
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þ ė
��
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noting that oblateness does not alter eccentricities. And because
we are only dealing with the system’s secular perturbations, the
system’s semimajor axes a are all constant (Brouwer&Clemence
1961).

The amplitude of a spiral density wave that is in a steady state
does not vary with time, so the disk eccentricities obey ė(a) ¼ 0
throughout the disk. A persistent spiral pattern must also rotate
with a constant angular velocity !, so

ė
��
disk

¼ �ė
��
sat
; ð3aÞ

! ¼ ˙̃!
��
disk

þ ˙̃!
��
sat

þ ˙̃!
��
obl

¼ const: ð3bÞ

These equations are used to obtain the wave amplitude e(a)
throughout the disk and the waves’ dispersion relation !(k) as
a function of the wavenumber k.

2.1. Wave Amplitude

First, calculate the rate at which the planetary ring perturbs it-
self. This ring is treated as a broad disk composed of many nar-
row, concentric annuli that have a mass �m(a), eccentricity e(a),
and longitude of periapse !̃(a) that are regarded as functions
of the rings’ semimajor axes a. Each annulus also has a half-
thickness h that is due to the ring particles’ dispersion velocity.
Now suppose that the annulus at a is perturbed by another an-
nulus of mass �m0 and radius a0; the perturbed annulus will then
have a disturbing function

�R ¼ G�m0

4a

1

2
f (� )e2 þ g(� )ee0 cos (!̃� !̃0)

� �
; ð4Þ

where a, e, and !̃ are the orbit elements of the perturbed annulus,
the primed quantities refer to the perturbing annulus, and the
f (� ) and g(� ) functions are

f (� ) ¼ � b̃(1)
3=2(� )� 6h2�2b̃

(0)

5=2(� ); ð5aÞ

g(� ) ¼ �� b̃(2)
3=2(� )þ 6h2�2b̃

(1)

5=2(� ); ð5bÞ

which depend on the semimajor axis ratio � ¼ a0/a and the
disk’s dimensionless scale height h ¼ h/aT1, which is pre-
sumed small. This disturbing function is derived in Hahn (2003)
and it differs somewhat from the more familiar disturbing func-
tion for a point-mass perturber due to the annuli’s finite thickness
h, which also softens the Laplace coefficients that appear in �R.
Those softened Laplace coefficients are

b̃(m)s (� ) ¼ 2

�

Z �

0

cos (m’)d’

½(1þ �2)(1þ h
2)� 2� cos ’�s

: ð6Þ

Note that when the annuli are infinitesimally thin, h ! 0, and
the softened Laplace coefficients b̃(m)s (� ) are equivalent to the
conventional Laplace coefficients b(m)s (� ), for which f (� ) !
�b(1)3/2(� ) and g(� ) ! ��b(2)3/2(� ), and the disturbing function
�R becomes equivalent to that due to a point perturber of mass
�m0 (e.g., Brouwer & Clemence 1961).
The perturbing ring’s mass is �m0 ¼ 2��0a0 da0, where �0 ¼

�(a0) is the mass surface density of the perturbing annulus of
radius a0 and radial width da0. The perturbing ring’s semimajor
axis is written a0 ¼ a(1þ x0), where x0 ¼ (a0 � a)/a ¼ � � 1
is the fractional distance between the perturbing ring a0 and
the perturbed ring a. Also define the normalized disk mass as
�d(a) � ��a2/M , so that the factor G�m0/4a in equation (4)
becomes �0

d(na)
2dx0/2� , where dx0 ¼ da0/a is the perturbing

ring’s fractional width. The disturbing function for ring a due
to perturbations from ring a0, equation (4), then becomes

�R ¼ 1

2
�0
d(na)

2��1 1

2
f (x0)e2 þ g(x0)ee0 cos (!̃� !̃0)

� �
dx0;

ð7Þ

where f (x0) and g(x0) are shorthand for equations (5) evaluated at
� ¼ 1þ x0. Inserting this into equation (1) then shows that ring
a0 alters the eccentricity of ring a at the rate

�ė ¼ � 1

na2e

@(�R)

@!̃
¼ 1

2
�0
dn�

�1g(x0)e0 sin (!̃� !̃0)dx0: ð8Þ

2.1.1. Ring-Disk Evolution

The total rate at which the entire disk alters the eccentricity of
ring a is the above with x0 integrated across the disk, so ėjdisk ¼R
disk

�ė. For the moment, consider a one-sided disk, one that
orbits wholly exterior to the satellite, where � is the fractional
distance between the satellite’s orbit and the disk’s inner edge.
The geometry is sketched in Figure 1, which shows that the in-
tegration variable x0 then ranges from �x to +1, so the ring’s
eccentricity varies at the rate

ė
��
disk

¼
Z
disk

�ė ¼ 1

2
n

Z 1

�x

�0
d(x

0)��1g(x0)e0 sin !̃� !̃0ð Þdx0:

ð9Þ

This integral will be dominated by the contributions from nearby
annuli that lie a small distance x0 away. In the jx0jT1, hT1

Fig. 1.—Schematic showing the geometry of the ring-satellite system seen edge-on. A satellite of massms and semimajor axis as orbits interior to a broad planetary ring
that extends to infinity. The satellite’s distance from the ring’s inner edge is� in units of the satellite’s semimajor axis as. A perturbed annulus in the ring hasmass �m, and it
lies a fractional distance x away from the ring’s inner edge, while the perturbing ring has mass �m0 and lies a fractional distance x0 from the perturbed ring.
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limit, the softened Laplace coefficients that appear in the g(� )
function, equation (5b), are (Hahn 2003)

b̃
(m)

3=2(x
0) ’ 2

�(x02 þ 2h2)
; ð10aÞ

b̃
(m)

5=2(x
0) ’ 4

3�(x02 þ 2h2)2
; ð10bÞ

so ��1g(� ) in equation (9) becomes

��1g(� ) ’ � 2

�

x02 � 2h2

(x02 þ 2h2)2
ð11Þ

in this approximation. Because of the steep dependence of g(� )
on x0, we can replace the eccentricity e0(x0) and disk mass �0

d(x
0)

in equation (9) with their values evaluated at the perturbed ring,
which lies at x0 ¼ 0, so e0 ’ e and �0

d ’ �d ¼ ��a2/M , which
are then pulled out of the integral so that

ėjdisk ’ � 1

�
�den

Z 1

�x

x02 � 2h2

(x02 þ 2h2)2
sin (!̃� !̃0)dx0: ð12Þ

A spiral wave will have a wavelength k ’ 2�/jkj, where k ¼
�@!̃/@a is the wavenumber of the spiral density wave. Thus,
the !̃� !̃0 in equation (12) can also be written as

!̃� !̃0(a0) ¼ �
Z a

a 0
k(r)dr: ð13Þ

However, most of the contribution to the integral in equation (12)
will be due to nearby annuli that lie a wavelength k away. But if
k also varies slowly with a, then it can be treated as a constant
over that wavelength, so equation (13) is !̃� !̃0 ’ �k(a� a0) ¼
kax0, and equation (12) then becomes

ėjdisk ’� 1

�
ka�den

Z 1

�jkjax

y2 � H2

y2 þ 2H 2ð Þ2
sin ( y)dy

�� 1

�
A0
H (jkjax)ka�den ð14Þ

after replacing the x0 integration variable with y ¼ jkjax0, which
is the distance from the ring edge in units of 2�wavelengths, and
replacing the disk’s scale height h with H �

ffiffiffi
2

p
hjkja, which is

roughly the disk’s vertical thickness in wavelength units. In the
above, the function A0(z) is

A0
H (z) ¼

Z 1

z

y2 � H2

y2 þ H2ð Þ2
sin y dy; ð15Þ

noting that equation (14) is also odd in y. We will be interested in
a disk whose vertical thickness is small compared to the wave-
length, so HT1, and A0

H (z) ’ sin (z)/z� Ci(z), where Ci(z)
is the cosine integral of Abramowitz & Stegun (1972). Far
downstream,where z31,Ci(z) ’ sin (z)/z� cos (z)/z2 þ O(z�3)
(Abramowitz & Stegun 1972), so

A0
H (z) ’

cos (z)

z2
ð16Þ

downstream. Evidently, A0
H (z) is very similar to the AH (z) func-

tion of Hahn (2007) which is also plotted in Figure 2 there.
Also keep in mind that equation (14) was derived with the

understanding that the wavenumber k varies little over a single

wavelength. Section 2.2.3 will quantify when that assumption
breaks down.

2.1.2. Ring-Satellite Evolution and the Wave Amplitude

The ring at semimajor axis a is also perturbed by the satellite,
and the disturbing function Rs due to the satellite is equation (4)
with �m0 replaced by the satellite’s massms, which can bewritten

Rs ¼
1

4
�s(na)

2 1

2
f (� )e2 þ g(� )ees cos !̃� !̃sð Þ

� �
; ð17Þ

where �s ¼ ms/M is the satellite’s mass in units of the central
planet’s mass and � ¼ as/a ¼ (1þ�þ x)�1 ’ 1� (�þ x).
The satellite’s perturbation causes the ring’s eccentricity to vary
at the rate

ėjsat ¼ � 1

na2e

@Rs

@!̃
¼ 1

4
�sng(� )es sin !̃� !̃sð Þ: ð18Þ

The perturbed ring lies a fractional distance xþ� away from the
satellite (see Fig. 1), with both well separated so that�3 h. Since
the ring also lies in the wave-excitation zone near the satellite,

g(� ) ’ �� b̃(2)
3=2(� ) ’ � 2

�(xþ�)2
ð19Þ

by equations (5b) and (10a). Also write the longitude difference
in equation (18) as !̃� !̃s ’ �kaxþ �o, where the angle �o al-
lows for the possibility that the annulus nearest the satellite at
x ¼ 0 has a longitude of periapse that differs from the satellite’s
longitude !̃s by angle �o. Thus,

ėjsat ’
�sesn

2�(xþ�)2
sin (kax� �o) ð20Þ

is the rate at which the satellite alters the ring’s eccentricity.
When the wave is in steady state, the two e-excitation rates,

equations (14) and (20), are balanced, which provides the am-
plitude of the density wave,

e(z)

es
¼ jkja

2

�s

�d

sin (z� sk�o)

(zþ jkja�)2A0
H (z)

; ð21Þ

where sk ¼ sgn(k) and z ¼ jkjax is the downstream distance
in units of 2� wavelengths. Now recall that A0

H (z) ’ cos (z)/z2

far downstream where z31 (eq. [16]). Since the downstream
wave amplitude e(z) should be a finite constant for all z31,
this then tells us that the longitude offset is �o ¼ ��/2, so e/es ’
�(jkja/2)(�s/�d)sk sin �o. These eccentricities must also be pos-
itive, so sin �o ¼ �1 ¼ �sk , and the density wave amplitude
then becomes

e

es
’ jk0ja�s

2�d

; ð22Þ

where jk0j is the initial wavenumber at x ¼ 0, where the wave is
excited at the disk’s inner edge. An identical expression was also
obtained in Hahn (2007) for the amplitude of the bending wave
that an inclined satellite would launch at the ring’s edge.

2.2. Dispersion Relation

Further use of the wave amplitude, equation (22), requires
knowing the initial wavenumber k0, which is obtained from the
waves’ dispersion relation, equation (3b). The first term in that
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equation, ˙̃!jdisk, is the rate at which the disk drives its own pre-
cession. The rate that a single annulus at a precesses due to the
secular perturbations from another annulus at a0 is

� ˙̃! ¼ 1

na2e

@(�R)

@e

¼ 1

2
�0
dn�

�1 f (x0)þ g(x0)
e0(x0)

e
cos !̃� !̃0ð Þ

� �
dx0; ð23Þ

where �R is equation (7). The total precession rate due to the
disk’s self-gravity is ˙̃!jdisk ¼

R
disk � ˙̃!, where the integration pro-

ceeds across the entire disk. Again, the integrand is a steep func-
tion of x0 due to the softened Laplace coefficients that are present
in the f and g functions, which allows us to replace the quantities
e0(x0) and �0

d(x
0) with the constants e and �d and to pull them out

of the integral. And since f (x0) ’ �g(x0) when jx0jT1 (from
eqs. [5] and [10]),

˙̃!
��
disk

’ 1

�
�dn

Z 1

�x

x02 � 2h2

(x02 þ 2h2)2
½1� cos (jkjax0)�dx0 ð24aÞ

¼ 2

�
�dn

Z 1

�x

x02 � 2h2

(x02 þ 2h2)2
sin2 jkj ax

0

2

� �
dx0 ð24bÞ

� B0
H (jkjax)jkja�dn; ð24cÞ

where

B0
H (z) ¼

2

�

Z 1

�z

y2 � H2

y2 þ H2ð Þ2
sin2

y

2

� �
dy: ð25Þ

When the disk is much thinner than the wavelength, H ¼ffiffiffi
2

p
hjkjaT1, and

B0
H (z) ’

1

2
þ 1

�
Si(z)þ cos z� 1

�z
; ð26Þ

where Si(z) is the sine integral of Abramowitz & Stegun (1972).
In this limit, the B0

H (z) function is identical to the BH (z) function
of Hahn (2007) with both taking values of 1/2 < B0

H < 1. And
far downstream, where z ! 1, the B0

H integral evaluates to

B01
H � lim

z!1
B0
H (z) ¼ e�H ð27Þ

for any value of H, which by the way, does differ a bit from the
BH function of Hahn (2007). The function B0

H (z) is a dimension-
less measure of the rate at which the disk drives its own preces-
sion, and this quantity becomes small when H k 1, or when the
disk thickness exceeds the wavelength. Evidently, a thick disk
having H 31 is less likely to sustain a density wave.

The satellite’s gravity also precesses the planetary ring, at the
rate

˙̃!
��
sat

¼ 1

na2e

@Rs

@e
¼ 1

4
�sn f (� )þ g(� )

es

e
cos (!̃� !̃s)

h i
ð28Þ

’ �s

2�(xþ�)2
þ �d sin (jkjax)

�jkja(xþ�)2

� �
n ð29Þ

when es/e is replaced with equation (22). The disturbing function
associated with the central planet’s oblateness is also

Robl ’
3

4
J2e

2 Rp

a

� �2

(an)2; ð30Þ

where J2 is the planet’s second zonal harmonic and Rp is the
planet’s radius (Murray &Dermott 1999), so precession due to
oblateness is

˙̃!
��
obl

¼ 1

na2e

@Robl

@e
¼ 3

2
J2

Rp

a

� �2

n

’ 1� 7

2
(xþ�)

� �
˙̃!s

��
obl
; ð31Þ

where ˙̃!sjobl � (3J2/2)(Rp/as)
2ns is the rate at which the satel-

lite’s orbit precesses due to oblateness, with ns being the satel-
lite’s meanmotion. Summing equations (24c), (29), and (31) then
provides the dispersion relation for these spiral density waves,

!(jkj) ’ D0(z)�djkjanþ
�sn

2�(xþ�)2

þ 1� 7

2
(xþ�)

� �
˙̃!s

��
obl
; ð32Þ

which is the angular rate at which the spiral density pattern ro-
tates. The D0 function in the above is

D0(z) ¼ B0
H (z)þ

sin z

�(zþ jkja�)2
; ð33Þ

where D0(z) is again numerically similar to the D(z) function
of Hahn (2007) which is also plotted in Figure 2 there, which
shows thatD0(z) takes numerical values of 1/2 � D(z) � 1when
HT1.

2.2.1. Long and Short Density Waves

When these density waves have propagated far downstream
of the satellite, the middle term in equation (32), which is the rate
at which the satellite precesses the disk, becomes even more
negligible with distance from the satellite, and theD0(z) function
becomes D0 ’ B01

H ¼ e�H , where H ¼
ffiffiffi
2

p
hjkja should now be

regarded as a dimensionless wavenumber. Thus, the downstream
dispersion relation is

!(jkj) ’ �d jkjane�
ffiffi
2

p
hjkja þ ˙̃!

��
obl
(x): ð34Þ

This dispersion relation can then be expressed in a more conven-
ient dimensionless form via the combination

!? �
ffiffiffi
2

p
h

�dn
!(jkj)� ˙̃!

��
obl

h i
¼ He�H : ð35Þ

Figure 2 plots this dimensionless dispersion relation !? ver-
sus the dimensionless wavenumber H, which shows that !? has
a maximum value of !?

max ¼ exp (�1) ’ 0:368, which occurs
for a wavenumberH ¼ 1. This figure also shows that as long as
the density wave’s spiral pattern rotates at an angular rate !? <
!?
max, then the disk can sustain two types of waves: long waves

that have a wavenumber H < 1 and short waves that have
H > 1, noting that these waves are called such since their wave-
length is k ¼ 2�/jkj ¼ 2

ffiffiffi
2

p
�h/H . This upper limit on !? also

tells us that the disk can sustain these density waves when the
spiral density pattern does not rotate too fast, namely, when (see
also Hahn 2003)

! <
!?
max�dnffiffiffi

2
p

h
þ ˙̃!

��
obl
: ð36Þ
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2.2.2. Group Velocity

The waves’ group velocity is cg ¼ @!/@k (Toomre 1969; Shu
1984; Binney & Tremaine 1987), which becomes

cg ¼ sk
@!

@jkj ¼ sk(1� H )e�H�dan ð37Þ

when the downstreamdispersion relation is differentiated (eq. [34]);
this is the rate of the spiral wave’s radial propagation. Since the
satellite is launching outward-propagating density waves from
the disk’s inner edge, cg > 0, so equation (37) implies that the
satellite can launch longH < 1waves that have sk ¼ sgn(k) ¼ 1
or short H > 1 waves that have sk ¼ �1. Spiral density waves
having k > 0 are called trailing waves, since the more distant
parts of a spiral arm trail in longitude, while leading waves have
k < 0.

Section 2.2.4 will show that anywaves excited by the Saturnian
satellites Pan and Daphnis, both of which inhabit narrow gaps in
Saturn’s main A ring, would have a dimensionless wavenumber
HT1. This means that these satellites could launch long trailing
waves that have sk ¼ 1 that would propagate outward at a rate
cg ’ �dan (e.g., Hahn 2003). And since sin �o ¼ �sk ¼ �1 (see
x 2.1.2), then �o ¼ ��/2, which means that the longitude of
periapse at the disk’s inner edge would trail the satellite’s lon-
gitude by 90

�
.

Below, equation (47) will also show that the wavenumber jkj
and hence H will increase as the wave propagates downstream.
So it is possible that a wavemight travel far enough for the wave-
number H to increase beyond unity. If that happens, then equa-
tion (37) suggests three possible outcomes: the trailing wave can
continue to advance further downstream with cg > 0 as a short
(H > 1) leading (sk ¼ �1) wave; or it can reflect (cg < 0) as a
short (H > 1) trailing (sk ¼ þ1) wave; or it might do both by
spawning both types of wave trains. Note, however, that the

short wave would propagate at a substantially slower rate, jcgj �
He�H�dan, since H > 1. This site in the disk where H ¼ 1 and
cg changes sign is a turning point for long waves. This site is also
known as the Q-barrier, since its location depends on the value
of Toomre’s stability parameter Q ’ vdn/�G� ¼ h/�d, where
vd ¼ hn is the particle disk’s dispersion velocity (Toomre 1964).

2.2.3. Wavenumber and Wavelength

The wavenumber k is obtained after calculating the satellite’s
precession rate ˙̃!s. When the system is in steady state, both the
satellite and the spiral wave precess at the same rate, ˙̃!s ¼ !(jkj),
which then provides a simple relation for k that depends only on
the system’s physical constants, namely, �d , �, and J2.

The satellite’s longitude of periapse !̃s precesses due to per-
turbations from the disk and the central planet oblateness, with
this precession occurring at the rate

˙̃!s ¼ ˙̃!s

��
disk

þ ˙̃!s

��
obl
; ð38Þ

where ˙̃!sjdisk ¼
R
disk

� ˙̃!s is the satellite’s precession rate due to
the entire disk, where

� ˙̃!s ¼ � 1

2
�0
dns

g(� )

�
1� e0

es
cos (!̃s � !̃0)

� �
dx0 ð39Þ

is the satellite’s precession rate due to a disk annulus of radius a0

and mass �m0. This is obtained from equation (23) when n, a, e,
and !̃ are replaced with ns, as, es, and !̃s, and the separation
x0 ! x0 þ�. The satellite’s precession rate due to the entire disk
is

˙̃!s

��
disk

¼
Z
disk

� ˙̃!s

’ 1

�
�dns

Z 1

0

(x0 þ�)�2 1� e

es
cos (kax0 � �o)

� �
dx0

ð40aÞ
’ �dns

��
þ �sns

2��2
S(jk0ja�); ð40bÞ

where

S(jk0ja�) � jk0a�j2
Z 1

0

sin ( y)dy

(yþ jk0ja�)2
ð41Þ

is another dimensionless function that depends on the initial
wavenumber jk0j and the gap width �. This quantity is also
plotted in Figure 2 of Hahn (2007) which shows that S takes
numerical values of 0 � S(jk0ja�) � 1.

The first term in equation (40b) is the rate at which the un-
disturbed disk precesses the satellite’s orbit, while the second
term is the additional precession that the satellite experiences
due to the density wave in the disk. Note, however, that if the
satellite instead orbited at the center of a narrow gap in the disk,
then the first term in equation (40b) would be doubled due to the
disk matter orbiting interior to the satellite. One would also ex-
pect additional precession to occur due to any density waves that
might be launched in this interior disk. However, it will be shown
below that this contribution is unimportant. With this in mind,
equation (40b) is generalized to account for a possible inner disk
by writing

˙̃!s

��
disk

’ "�dns

��
þ �sns

2��2
S(jk0ja�); ð42Þ

Fig. 2.—Dimensionless dispersion relation, eq. (35), plotted vs. the dimension-
less wavenumber H ¼

ffiffiffi
2

p
hjkja. Note that !? has a maximum value of !?

max ¼
exp (�1) ’ 0:368, which occurs when the wavenumber H ¼ 1. When the spiral
density pattern precesses at an angular rate!? < !?

max, this dispersion relation has
two solutions: a long-wavelength wave that has a wavenumberH < 1 and a short-
wavelength wave that has a wavenumber H > 1.

SECULAR EVOLUTION OF CLOSE RING-SATELLITE SYSTEM 1573No. 2, 2008



where " ¼ 1 if the disk lies entirely interior or exterior to the
satellite and " ¼ 2 if the satellite instead orbits in the center of a
gap whose fractional half-width is�. The satellite’s total preces-
sion rate then becomes

˙̃!s ¼ ˙̃!s

��
disk

þ ˙̃!s

��
obl

¼ "�dns

��
þ �sns

2��2
S(jk0ja�)þ ˙̃!s

��
obl
:

ð43Þ

When the disk and satellite are in steady state, the satellite and
its spiral wave pattern both precess in concert, so ˙̃!s ¼ !(jkj),
which becomes

�D0(z)jkja� ¼ "þ �c

�d

1þ x

�

� �
þ �s

2�d�
f (jk0a�j; z); ð44Þ

where

f (jk0a�j; z) ¼ S(jk0ja�)� jk0a�j2

(jk0a�j þ z)2
ð45Þ

is another function that takes values of �1 � f � 1, and

�c �
21�

4

Rp�

as

� �2

J2 ð46Þ

is called the critical disk mass (Hahn 2007).
Two additional assumptions will then provide a simple ex-

pression for the wavenumber k. First, assume that the right term
in equation (44) is small compared to the middle term, which re-
quires the satellite’s mass to be sufficiently small, namely, that
�sT2�c�. Second, assume that the dimensionless wavenumber
obeys HT1, which means that D0(z) ! 1 downstream. Note,
however, thatD0(z) is not unity in the wave launch zone; rather, it
takes values of 1/2 � D0(z) � 1 over the initial wavelength (see
Fig. 2 of Hahn 2007). However, a sufficiently accurate result
is obtained whenD0(z) is replaced with its average value over the
first wavelength, D̄ ’ 0:87 (Hahn 2007). These assumptions
will be confirmed below in x 2.2.4. With these assumptions in
hand, equation (44) then yields the wavenumber

jk(x)j ’ 1

�D̄a�
"þ �c

�d

1þ x

�

� �� �
; ð47Þ

with

jk0j ¼
"þ �c=�d

�D̄a�
ð48Þ

being the initial wavenumber evaluated at x ¼ 0.
The first wavelength k0 is obtained from

R
k0
0
jkjda ¼ 2�. When

�cT�d , that integral yields

k0 ’ 2�2D̄a�=": ð49Þ

However, when �ck�d (which occurs when the central planet is
too oblate or the diskmass is too small), the wavenumber k varies
with distance x, which violates a key assumption in the derivation
of the wave amplitude (x 2.1.1). The numerical experiment de-
scribed in x 4.3 will also show that the wave amplitude (eq. [52],
derived below) is smaller than expected in this case. Nonetheless,
that experiment also shows that the formula for the expected
wavenumber, equation (47), is quite reliable when �ck�d .

2.2.4. Checking the Assumptions

These results will be applied to the Saturnian satellites Pan
and Daphnis that orbit in narrow gaps in Saturn’s main A ring.
Pan has amass�s ¼ 8:7 ; 10�12 Saturnmasses (Porco et al. 2007)
and a semimajor axis as ¼ 133; 584 km (Jacobson et al. 2008).
Pan orbits near the center of the Encke gap whose half-width is
�a ¼ 162:5 km (Porco et al. 2005), so its fractional half-width
is � ¼ �a/as ¼ 0:0012. Saturn’s radius is Rp ¼ 60;330 km
and its second zonal harmonic is J2 ¼ 0:0163, so the critical disk
mass is �c ¼ 7:9 ; 10�8. Consequently, the quantity 2�c� ¼
1:9 ; 10�10, which does indeed satisfy the requirement that
�sT2�c�.
This same assumption is also satisfied by Daphnis, whose

mass is �s ¼ 1:5 ; 10�13 (Porco et al. 2007), but by a smaller
margin. Daphnis orbits in the Keeler gap, which itself is about
2900 km beyond the Encke gap. The Keeler gap is also about
8 times narrower than the Encke gap (Tiscareno et al. 2005), so
� ’ 1:5 ; 10�4, which reduces the critical disk mass to �c ’
1:2 ; 10�9. Consequently, �s < 2�c� is still satisfied, but only
by a factor of �2.5.
The other requirement is that H ¼

ffiffiffi
2

p
hjkjaT1. The ring’s

vertical thickness is about h ’ 30mnear the Encke gap (Tiscareno
et al. 2007), so the ring’s fractional thickness is h ¼ h/as ’
2 ; 10�7; a comparable thickness can also be inferred from the
A ring viscosity that is reported in Porco et al. (2007). The ring’s
surface density here is � ’ 46 g cm�2 (Tiscareno et al. 2007), so
the normalized disk mass is �d ¼ ��a2

s
/M ’ 4:5 ; 10�8, which

means that Pan’s initial wavenumber is jk0ja ’ 1100 by equa-
tion (48), while Daphnis has jk0ja ’ 5000. Consequently, H ¼ffiffiffi
2

p
hjkja � O(10�3 to 10�4)T1 is very well satisfied. And

since H < 1, this means that these satellites will launch long
trailing density waves that propagate radially outward from the
gap edge, provided these satellites have nonzero eccentricities.

2.2.5. Waves in an Interior Disk

A satellite that orbits in the center of a gap in a broad planetary
ring might also excite a disturbance in the disk material that or-
bits interior to the satellite. The dispersion relation for any den-
sity waves launched at the inner gap edge is

jk(x)j ’ 1

�D̄aj�j
"� �c

�d

1þ x

�

��� ���� �� �
; ð50Þ

which may be derived via the method that is described in foot-
note 1 of Hahn (2007). This dispersion relation is identical to
equation (47) except for the sign on the term that is proportional
to the critical mass. Since the right-hand side of equation (50)
must be positive wherever the wave propagates, this equation
tells us that these density waves are only allowed inward a dis-
tance jxj < xin, where

xin �
"�d

�c

� 1

� �
j�j ð51Þ

is the distance of the waves’ maximum inward excursion. For
Pan, this distance evaluates to xin ’ 0:1�, which corresponds to
a physical distance of xinas ’ 15 km, which is only a tiny frac-
tion of the wave’s initial wavelength that is calculated below in
x 2.3. In short, the A ring material that orbits interior to Pan is
unable to sustain this type of density wave.
Note, however, that xin is a bit larger for the ring material that

orbits interior to Daphnis and the Keeler gap. However, Daphnis’s
small mass (Porco et al. 2007) and low eccentricity (Jacobson
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et al. 2008) results in waves of such low amplitude that this issue
is moot.

2.3. Wave Amplitude, Continued

Plugging the initial wavenumber, equation (48), into equa-
tion (22) then yields an expression for the amplitude of the den-
sity wave that is nowwritten only in terms of the system’s known
physical parameters,

e

es
’ �s("þ �c=�d)

2�D̄�d�
: ð52Þ

However, keep inmind that this derivation requires that the wave-
length vary little over the first wavelength, which in turn re-
quires �cT�d . The simulations described in x 4.3 show that
equation (52) overestimates the wave amplitude when �ck�d .

Pan’s eccentricity is es ¼ 1:4 ; 10�5 (Jacobson et al. 2008),
so equation (52) predicts eccentricities of e � 1:5 ; 10�6 due to
the density wave that Pan excites at the outer edge of the Encke
gap, since " ¼ 2, �c ¼ 7:9 ; 10�8, and �d ’ 4:5 ; 10�8 (see
x 2.2.4). However, this is actually an overestimate, since�c/�d ’
1:8 is not small, which is a key assumption in the derivation of
equation (52). In fact, the simulation described in x 4.3 shows
that equation (52) overestimates the amplitude of Pan’s waves by
a factor of � ’ 4, so the epicyclic amplitude due to this wave at
the outer Encke gap is only�r ¼ eas/� � 50 m, which is likely
too small to be seen by a spacecraft such as Cassini. And since
this wave’s initial wavenumber is jk0ja ’ 1100 (x 2.2.4), its ini-
tial wavelength would be k0 ¼ 2�/jk0j ’ 760 km, which is also
far longer than the wavelengths of any of the more familiar den-
sity waves that satellites routinely launch at their many mean-
motion resonances in the rings.

Recall that the wavenumber jkj increases with distance x (see
eq. [47]), so the wavelength k shrinks as the wave propagates
outward. Note that the A ring’s outer edge is �a ’ 3200 km
away from the Encke gap, which corresponds to a fractional dis-
tance of x ¼ �a/as ’ 0:024. Inserting this into equation (47)
then yields a wavenumber of jkja ’ 1:2 ; 104, which corresponds
to a wavelength of k0 ¼ 2�/jk0j ’ 70 kmwhen the wave hits the
outer edge of the A ring. This presumes that the wave was not
damped en route by the ring’s viscosity, but x 2.3.1 shows that
the viscous damping of these long outbound waves is modest.
The reflection of these undampedwaves near the outer edge of the
A ring is also discussed in x 4.2.

The fractional variation in the disk’s surface density due to
the density wave is (Borderies et al. 1985; Hahn 2003)

��

�0

’ @(ea)

@a
cos (�� !̃)þ ea

@!̃

@a
sin (�� !̃); ð53Þ

where � is the longitude in the disk and �0 is the surface density
of the undisturbed disk. The first term is negligible since the
downstream eccentricity e is constant, so the magnitude of the
fractional variation in surface density variations due to the wave
is dominated by the second term, which is

��

�0

����
���� ’ eajkj ð54Þ

since k ¼ �@!̃/@a (see eq. [13]). Since the wave launched by
Pan has an amplitude of e � 4 ; 10�7 and an initial wavenumber
of jk0ja ’ 1100, the surface density variations due to this wave
are quite small, only ��/�0 ’ eajkj � 4 ; 10�4, which again is
too small for detection. However, it might be easier to see this

wave further downstream, due to the increase in jkjwith distance
x. For instance, jkjwill have increased by a factor of 10 when the
wave reaches the outer part of the A ring, so ��/� � 4 ; 10�3

there, but this again is probably still too small for detection.
Thus, the observational consequences of these density waves
are seemingly slight. Nonetheless, these waves are not totally
inconsequential, since x 3 will show that the excitation of these
waves can also result in a vigorous damping of the satellite’s
eccentricity.

2.3.1. Viscous Damping of Spiral Density Waves

The variations in the ring’s surface density due to the density
wave are dominated by the second term in equation (53), so
�� ’ ��0eka sin (�� !̃), where the ring’s longitude of periapse
is !̃(a; t) ¼ !t �

R a
k(r)dr, with the !t term accounting for the

spiral pattern’s rotation with time due to the system’s preces-
sion. Inserting this into the above shows that �� has the form
�� ¼ Re Sei�ð Þ, which has an amplitude jS(a)j ¼ �0ejkja and
a phase

�(a; �; t) ¼ m�� !t þ
Z a

k(r)dr; ð55Þ

noting that � in the above was multiplied by m ¼ 1 so that this
work is readily compared to other studies of density waves de-
veloped for spiral patterns having m � 1 arms.

When there is no dissipation in the system, the wavenumber k
in equation (55) is real (e.g., eq. [47]). However, if there is any
dissipation in the disk, then the wavenumber k acquires an
imaginary component, i.e., k ! kR þ ikI , which causes exponen-
tial damping of the wave’s amplitude. If that dissipation is due
to the disk’s kinematic viscosity 	, then the imaginary part of the
wavenumber is1 (Shu 1984)

kI ¼
	k3R

mn� !
þ 7sk	k

2
R(mn� !)

6�G�0

’ 	k3R
n

1þ 7

6�d jkRja

� �
;

ð56Þ

where kR is the real part of the wavenumber (eq. [47]), sk ¼
sgn(kR) ¼ þ1, m ¼ 1, and noting that �G�0 ¼ �dan

2 and that
the spiral pattern rotates slowly, i.e., !Tn. Since the long
waves launched by Pan have wavenumbers of jkja � 103Y104

(see x 2.3) and the A ring’s normalized disk mass is �d ’
4:5 ; 10�8 (x 2.2.4), it is clear that the second term in equa-
tion (56) dominates over the first, so

kIa ’ 7

6�d

	

a2n

� �
jkRaj2 ð57Þ

for outward-propagating long waves. Consequently, the ring’s
surface density varies as

�� ¼ Re Sei�
	 


/ exp �
Z x

0

kI (r)dr

� �
; ð58Þ

which reveals how ring viscosity reduces the amplitude of the
wave as it travels a fractional distance x.

1 Comparison of eq. (55) to the phase convention adopted in Shu (1984)
shows that the signs of m and ! are reversed. This sign reversal is accounted for
in eq. (56).
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It is anticipated that the wave’s viscous damping length ‘	
will be much larger than the gap half-width�. In that case, the
wavenumber that appears in the above formulae is approximately

jkRja ’ �c x
0

�D̄�d�
2

ð59Þ

by equation (47). Inserting this into equation (57) and then eval-
uating the integral in equation (58) shows that

�� / e�(x=‘	 )
3

; ð60Þ

where ‘	 is the viscous damping length in units of as,

‘	 ¼
18�3

d

7

� �
a2n

	

� �
�D̄�2

�c

� �2
" #1=3

: ð61Þ

The following evaluates this viscous damping length ‘	 for the
waves that Pan would launch at the outer edge of the Encke gap.

There are two sources of viscosity in Saturn’s rings: collisions
among ring particles, and gravitational wakes. Viscosity due to
collisions among ring particles is 	c ’ 0:46c2
 /n(1þ 
 2), where
c ¼ hn is the particle’s dispersion velocity and 
 is the ring opti-
cal depth (Goldreich&Tremaine 1982). Thus, the dimensionless
viscosity combination 	c/a

2n in the above evaluates to

	c
a2n

’ 0:46h2


1þ 
 2
’ 8 ; 10�15; ð62Þ

since the outer A ring has an optical depth of 
 ’ 0:6 and h ’
2 ; 10�7. Note that the viscosity that is associated with the ring’s
gravitational wakes 	g is also comparable, since

	g
a2n

¼ CG 2�2

a2n4
¼ C�2

d

�2
’ 7 ; 10�15; ð63Þ

where the coefficientC ’ 33 for the A ring (Daisaka et al. 2001)
and �d ’ 4:5 ; 10�8. This all suggests that the total viscosity
in the outer A ring is around 	/a2n � 10�14. Inserting this into
equation (61) then shows that the viscous damping length for Pan’s
waves (with � ¼ 0:0012 and �c ¼ 7:9 ; 10�8) is ‘	 ’ 0:039,
which corresponds to a physical distance of ‘	as ’ 5200 km.
Note, however, that the outer edge of the A ring only lies at a
fractional distance of x ’ 0:024, which means that the ampli-
tude of Pan’s outbound density waves is reduced only by a factor
of e�(x/‘	 )

3 ’ 0:8 as it travels across the A ring. This calculation
indicates that the damping of long waves due to ring viscosity is
only of marginal importance.

Section 4.3 also shows that this long wave will reflect at the
outer edge of the A ring (or else at the nearby Keeler gap) and
march back toward Pan as a superposition of both long and short
waves that are of roughly equal magnitudes. Pan’s outbound
long density waves will have a dimensionless wavenumberHL ¼ffiffiffi
2

p
hjkja ’ 3:4 ; 10�3T1 when they near the outer edge of the

A ring. LetHS be the dimensionless wavenumber of the reflected
short waves. Since the long and short spiral wave patterns both
precess at the same rate, thewavenumbersHL andHS both satisfy
the same dimensionless dispersion relation, equation (35), so

HL ’ !? ¼ HSe
�HS : ð64Þ

This is solved numerically for the wavenumber of the reflected
short wave, HS ’ 7:7, which yields a physical wavenumber of

jksja ’ 2:7 ; 107, since h ’ 2 ; 10�7. This corresponds to a
wavelength ks ¼ 2�/jksj that is comparable to the disk’s scale
height h ¼ has � 30 m. These very short wavelength waves
will be nonlinear (��/� > 1), and they will likely damp on a
very short spatial scale.

3. DAMPING THE SATELLITE’S ECCENTRICITY

The excitation of these density waves also alters the satellite’s
eccentricity es at a rate that can be calculated from the angular
momentum flux that is transported by these waves. The angular
momentum content of a narrow annulus in the disk is �L ¼
�m GMa(1� e2)½ �1/2, where �m ¼ ��A is the mass of that annu-
lus which has an area �A and a mass surface density �. The sur-
face density of angular momentum in that annulus is then ‘ ¼
�L/�A ¼ �na2 1� e2ð Þ1/2 ’ �na2(1� e2/2) ¼ ‘0 þ ‘w, where
‘0 ¼ �na2 would be the angular momentum surface density if
the ring were circular, and ‘w ¼ ��e2na2/2 is the surface den-
sity of angular momentum that is associated with the wave
whose amplitude is e. The flux of angular momentum that is
transported by the wave is F ¼ ‘wcg, where cg ¼ �dan is the
group velocity of long density waves (see x 2.2.2). Consequently,
the angular momentum luminosity, which is the rate at which
waves transport angular momentum across an annulus of radius
a, is L ¼ 2�aF ¼ �(e�dan)

2M .
Note the sign on L , which means that these waves transport

angular momentum inward, from the disk to the satellite. This
transport also increases the satellite’s angular momentum Ls ¼
ms GMas(1� e2s )

� �
1/2’ msnsa

2
s (1� e2s /2) at the rate dLs/dt ’

�msnsa
2
s esės ¼ �L , which then provides the rate at which

wave excitation tends to damp the satellite’s eccentricity,

ės ¼ � e2�2
d

es�s

ns: ð65Þ

And if the wavenumber varies little over that first wavelength,
which requires �cT�d , then the wave amplitude e is given by
equation (52), which yields the satellite’s eccentricity damping
rate

ės

es
¼ � �s("þ �c=�d)

2

(2�D̄�)2
ns ð66Þ

and the eccentricity decay timescale


e ¼
es

ės

����
���� ¼ 2�(D̄�)2

�s("þ �c=�d)
2
Porb; ð67Þ

where Porb ¼ 2�/ns is the satellite’s orbit period.
If, however, �ck�d , then equation (52) will overestimate the

wave amplitude e, and equation (66) will not be valid. Nonethe-
less, equation (65) can still be used to determine the satellite’s
e-damping rate, but the wave amplitude emust be determined by
other means, such as by using the rings model that is described
in x 4.
3.1. Comparison to Lindblad and Corotation Resonances

The satellite is also perturbing the planetary ring at its many
Lindblad and corotation resonances in the disk, and this interac-
tion also causes the satellite’s eccentricity to evolve at the rate

ėsjL;cor ¼ ėsjL þ ėsjcor; ð68Þ

where the first term represents the eccentricity excitation that
is due to the Lindblad resonances and the second term is the
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eccentricity damping that is due to corotation resonances. The
rate at which the satellite’s eccentricity es evolves due to its
Lindblad resonances in a narrow annulus of mass �m0 that lies
a fractional distance x0 away is (from Goldreich & Tremaine
1981)

�ėsjL ¼ fL�ses

2jx0j5
�m0

M
ns; ð69Þ

where the factor fL ’ 3:045. The satellite’s total eccentricity var-
iation due to all of its Lindblad resonances throughout the disk is
obtained by setting �m0 ¼ 2��0a0 da0 ¼ 2�0

dM dx0 and integrat-
ing equation (69) across the disk, which yields

ėsjL ¼ 2

Z 1

�

�ėsjL ¼ fL�s�des

2�4
ns; ð70Þ

where the factor of 2 in the middle term accounts for the ring ma-
terial orbiting interior and exterior to the satellite. The e-excitation
timescale due to Lindblad resonances is then


L ¼ es

ėsjL
¼ �4

�fL�s�d

Porb: ð71Þ

The satellite also has many corotation resonances that lie in
the planetary ring, and their effect is to damp the satellite’s ec-
centricity at a rate ėsjcor that has the same form as equations. (69)Y
(70) but with a lead coefficient of fcor ¼ �3:193 (Goldreich &
Tremaine 1981). However, this eccentricity damping only occurs
if the particles’ motions at the corotation resonances are not sat-
urated. The total rate at which the satellite’s eccentricity varies
due to its Lindblad and corotation resonances is

ėsjL;cor ¼ ėsjL þ ėsjcor ¼
fL;cor�s�des

2�4
ns; ð72Þ

where the factor fL;cor ¼ fL þ fcor ¼ �0:148, which indicates
that the net effect of these resonances is to damp the satellite’s
eccentricity, provided the corotation resonances are not satu-
rated. Note, however, that j fL;cor/fLj ’ 5%, which means that ec-
centricity damping wins by only a small margin. Consequently,
the total e-damping timescale due to Lindblad and corotation res-
onances is then


L;cor ¼
es

ėsjL;cor

�����
����� ¼ �4

�j fL;corj�s�d

Porb: ð73Þ

If, however, the corotation resonances are saturated, then the
Lindblad resonances will pump up the satellite’s eccentricity,
but at a rate that is half of equation (70) (see Goldreich &
Tremaine 1981). Nonetheless, the satellite’s secular perturba-
tions of the ring will also endeavor to damp the satellite’s ec-
centricity at the rate given by equation (66). Comparing these
two rates will show that eccentricity damping is still assured
when the satellite’s gap is sufficiently wide,

�2 > fL(�D̄)
2�d=2; ð74Þ

provided �cT�d .
Daphnis satisfies the �cT�d condition, and since �d ’

4:5 ; 10�8, D̄ ¼ 0:87, and " ¼ 2, the above gap-width require-
ment evaluates to�k 7 ; 10�4. However, the Keeler gap’s half-

width is only � ’ 1:5 ; 10�4, so this requirement is not satis-
fied. Consequently, if Daphnis’s corotation resonances were in
fact saturated, then this secular e-damping could not counter-
balance the effects of the Lindblad resonances, which would
pump up Daphnis’s eccentricity until that satellite crashed into
the A ring. That Daphnis has a very low eccentricity suggests
that the motions of the ring particles at its corotation resonances
are not saturated.

Note that Pan does not satisfy �cT�d, so equation (74) does
not apply to this satellite. Instead, the rings model of x 4.3 is
used to assess that satellite’s e-damping rate.

4. SIMULATIONS OF DENSITY WAVES
LAUNCHED AT A GAP EDGE

The rings model of Hahn (2003) is used to test the preceding
results. This model treats the disk as a set of N discrete gravitat-
ing annuli having semimajor axes aj, eccentricities ej, longitudes
of periapse !̃j, and half-thicknesses hj. Themodel only considers
the system’s secular gravitational perturbations, so it also solves
the same equations of motion, equations (1), but it does so with-
out making any of the approximations and assumptions invoked
in x 2. Consequently, the model provides another check on the
analytic results obtained above.

4.1. Outbound Waves

The rings model is used to simulate the spiral density waves
that are launched by an eccentric satellite that orbits just interior
to a disk. Figure 3 shows the amplitude of this wave as it ad-
vances across a disk, with the system’s parameters being detailed
in the figure caption. Note, however, that those parameters do
not correspond to any real ring-satellite system. Rather, these pa-
rameters were chosen to illustrate the results of x 2 in the limit in
which those results were obtained, namely, that the factor �c/�d

appearing in the wavenumber equation (47) is modest, with
�c/�d ¼ 0:2. This causes the wavenumber to vary only a small
amount across the first wavelength, which is a key assumption
of x 2.1’s derivation of the wave amplitude. Nonetheless, the
simulation reported in Figure 3 does correspond loosely to a small
�10 km satellite orbiting just interior to a ring whose surface
density is similar to Saturn’s main A ring.

The amplitude of the simulated wave compares favorably with
the wave’s expected amplitude, equation (52), which is indicated
by the dashed line in Figure 3. The wave propagation time also
provides another check on these calculations. Note that the
time for these waves to propagate a fractional radial distance
x ¼ �r/a is

tprop ¼
�r

cg
¼ xPorb

2��d

; ð75Þ

where cg is the waves’ group velocity, equation (37). The simu-
lated disk has a normalized mass of �d ¼ 5 ; 10�8 and a frac-
tional width x ¼ 0:015, so the anticipated propagation time is
tprop ¼ 48 ; 103 orbits, which compares well with the simulated
wave’s propagation time (Fig. 3).

Section 2.2.2 predicts that the satellite will launch a long
trailing density wave that has sk ¼ sgn(k) ¼ þ1. So by equa-
tion (13), this means that the disk’s longitude of periapse !̃(a)
should steadily decrease at greater distances a in the disk. This
is confirmed in Figure 4, which shows the waves’ longitudes
relative to the satellite’s, !̃(a)� !̃s. Also note that the longitude
of periapse at the disk’s inner edge is 90� behind the satellite’s
longitude, as expected. We find that once the density wave is
established in the disk, its longitudes !̃(a) precess at the same
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rate as the satellite’s, and that the disk’s eccentricities e(a) are
also constant, which confirms the steady state assumption em-
ployed in equations (3). The disk’s surface density variations
due to the wave are given in equation (53), which is dominated
by the second term. Inspection of that term shows that the disk’s
maximum surface density occurs at longitudes that trail those
shown in Figure 4 by 90

�
, while the disk’s minimum surface

density (Fig. 4) leads by 90�.
Figure 4 also plots the dimensionless wavenumber jkja�

across the disk at time t ¼ 60 ; 103 orbits, when the density wave
just starts to reflect at the disk’s outer edge. Also plotted is the ex-
pected wavenumber, equation (47), which compares well. The
simulation’s variations in k at the disk’s far edge are due to the
wave reflecting there, while the variations near the disk’s inner
edge are due to the very short wavelength variations in !̃(a) that
are just barely seen in the top panel. Those wiggles are the short
waves that are described in x 2.2.2. Evidently, the satellite also
launches short-wavelength leading waves at the disk’s inner
edge, which are the cause for the high-frequency wiggles also
seen in the t ¼ 60 curve shown in Figure 3. Figure 4 also shows

that the short waves propagate much more slowly than the long
waves, as expected. Note, however, that nonlinear effects that are
not modeled here would damp these nonlinear short waves on a
very short spatial scale (e.g., x 2.3.1). The rate at which the disk
damps the simulated satellite’s eccentricity es is shown in Figure 5,
which compares well with the expected rate, equation (66).
The numerical quality of this simulation is assessed by mon-

itoring the systems’ total angular momentum deficit, which is Le ¼
1
2

P
j mjnja2

j
e2j , where the sum runs over all rings and satellites

in the system. Since this quantity is conserved by equations (2)
(Hahn 2003), it provides a useful check on the simulation’s nu-
merical precision. The single-precision calculation shown in Fig-
ure 3 conserves Le with a fractional error of j�Le/Lej < 4 ; 10�5.

4.2. Reflection at an Outer Boundary

Section 2.3.1 showed that ring viscosity is only marginally
effective at damping the long waves that an eccentric satellite
would launch at the gap’s outer edge. Consequently, these waves
will propagate outward until they hit a barrier, such as another
gap in the ring or the ring’s outer edge. The subsequent fate of

Fig. 3.—Rings model used to simulate spiral density waves launched by an eccentric satellite that orbits just interior to a disk. The satellite’s normalized mass is
�s ¼ 10�12, and the disk is comprised of N ¼ 500 rings having semimajor axes distributed over 1þ� � aj/as � 1:015, where� ¼ 5 ; 10�4 is the fractional distance
between the satellite and the innermost ring. The rings’ fractional masses are �r ¼ 2:9 ; 10�12, so the normalized disk mass is �d ¼ ��r 2/M ¼ (�r/2)(as/� ) ¼ 5 ; 10�8,
where the rings’ fractional separations are �/as ¼ 0:0145/N ¼ 2:9 ; 10�5. The rings’ fractional half-widths h are also set equal to their separations �/as. The central planet’s
zonal harmonic is J2 ¼ 0:012, and the planet’s radius is Rp/as ¼ 0:45, so this system’s critical disk mass is �c ¼ 1:0 ; 10�8 and �c/�d ¼ 0:2. The satellite’s initial ec-
centricity is es ¼ 10�5, with all other rings initially having zero eccentricities. The curves show the fractional amplitude of the density wave, e(a)/es, as it advances across
the disk, shown at selected times t in units of 103 orbital periods. The dashed line is the expected wave amplitude, eq. (52), with " ¼ 1.
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such a wave train is illustrated in Figure 6, which shows the state
of the simulation described in x 4.1 but at a later time, t ¼ 2:1 ;
105 orbits. Here, the outbound long wave has already reflected
at the simulated ring’s outer edge and propagated back toward
the satellite, but as the superposition of a long leading wave and
a short trailing wave. Consequently, the long-wavelength un-
dulations seen in Figure 6’s e(a) curve represents the super-
position of outbound and inbound longwaves.Note, however, that
the reflected waves’ angular momentum content is now shared
between a long and a short wave, so the amplitude of the inbound
long wave is smaller than the outbound long wave. Consequently,
the broad e(a) undulations seen in Figure 6 are not due to a
standing wave in the disk, but instead represent the superposition
of two traveling waves having different amplitudes.

The high-frequency variations seen in Figure 6’s e(a) curve
are due to short waves that have a wavelength that is compa-
rable to the disk scale height h. Note that the right-hand side of
Figure 6 shows that the reflected short wave is still confined to
the vicinity of the ring’s outer edge by time t ¼ 2:1 ; 105 orbits,
which indicates that these short waves travel slower than the
long waves, as expected. The rapid variations in e(a) seen at the
left-hand side of Figure 6 show that the satellite is also exciting
short waves at the gap’s inner edge. These short waves are prop-
agating much more slowly (see x 2.2.2), by a factor of He�H �
0:01, so these very slow moving waves have had little oppor-

tunity to travel very far by time t ¼ 2:1 ; 105 orbits. Longer term
simulations also show that the amplitude of any short waves is
always comparable to the amplitude of the long waves. Equa-
tion (54) also indicates that these short waves will be very non-
linear (j��/�j > 1), so the reflected short wave is expected to
damp over a very short spatial scale that is probably comparable
to the ring’s scale height h, in the vicinity of the ring’s outer edge.

However, the reflected long wave will still return to the disk’s
inner edge, where it can interact with the satellite and/or reflect
again. The satellite can interact with this returning wave by ab-
sorbing some of the wave’s angular momentum content, which
would also excite the satellite’s eccentricity and seemingly stall
any further e-damping. However, that e-pumping would then be
counterbalanced by enhanced eccentricity damping due to the
excitation of even higher amplitude density waves. Consequently,
the damping of the satellite’s eccentricity by this phenomenon is
still assured, despite the fact that long waves propagate with only
a modest amount of viscous damping. This is due to the fact
that all long waves eventually reflect somewhere in the disk and
spawn short waves that are easily damped.

4.3. Waves Launched by Pan

The rings code is also used to simulate the density waves that
an eccentric Pan can launch at the outer edge of the Encke gap.
As x 2.3 notes, the ratio of the critical mass �c to the disk mass
�d is �c/�d ’ 1:8, which indicates that the wavenumber changes
substantially over the first wavelength (see eq. [47]), which vi-
olates a key assumption in the derivation of the wave ampli-
tude. In fact, a comparison of equation (52) to simulations of
Pan’s waves shows that that equation overestimates the wave
amplitude by a factor of � ’ 4, which means that equation (66),
which provides the satellite’s eccentricity-damping rate, would
also be in error by a factor of � 2. Nonetheless, a comparison of
the simulated wave’s wavenumber jkj to equation (47) shows
that equation to be in excellent agreement with the model results.
Equation (65) is also shown to be a reliable indicator of the sat-
ellite’s eccentricity damping rate, even when �c > �d .

Fig. 4.—Top: Disk’s longitude of periapse !̃(a) relative to the satellite’s
periapse !̃s, in units of �, for the simulation of Fig. 3 at time t ¼ 60 ; 103 orbits,
when the wave has swept across the disk. The dots in the bottom panel show the
dimensionless wavenumber jkja� at this moment, where wavenumber is calcu-
lated from k ¼ �@!̃/@a. The gray line is the expectedwavenumber, eq. (47), with
" ¼ 1.

Fig. 5.—Rate at which the satellite launching the wave in Fig. 3 has its ec-
centricity damped, ės, plotted vs. time t in units of 103 orbit periods. The solid
gray curve is the expected rate, eq. (66).
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These same simulations also show that density waves launched
by Pan are not able to propagate across the Keeler gap, which lies
about 2900 km downstream of the Encke gap. The width of that
gap is approximately 40 km, which is about half the wavelength
of Pan’s waves in this region. Despite having a wavelength that
is larger than the gap’s full width, Pan’s waves are unable to prop-
agate across the Keeler gap. Instead, those waves reflect at the
gap’s inner edge, which, in the simulation, propagate back to Pan
as a superposition of long and short waves. However, in a real
disk those nonlinear short waves would quickly damp very near
the Keeler gap’s inner edge.

This wave action will also damp Pan’s eccentricity over a
timescale equal to equation (67) multiplied by � 2 ¼ 16, which
evaluates to 
e ’ 1400 yr. Note that this e-damping is compet-
itive with, but not quite faster than, the eccentricity excitation
that is due to Pan’s Lindblad resonances in the ring, which pump
up the satellite’s e over a slightly faster timescale of 
L ’ 900 yr
(see eq. [71]). But if the particles’ motions at Pan’s corotation
resonances are saturated, then e-damping by the corotation torque
is shut off, while the e-excitation due to the Lindblad torque is
halved (Goldreich&Tremaine 1981), so 
L ! 1800 yr. So when
Pan’s corotation resonances are saturated, Pan’s e-damping due
to its secular interaction with the ring will exceed the e-excitation

that is due to its Lindblad resonances in the ring, but only by a
small margin. But if particle motions at Pan’s corotation reso-
nances are in fact unsaturated, then the near-cancellation of the
Lindblad and corotation torques results in a secular e-damping
timescale that is about 13 times shorter than the total resonant
e-damping timescale (eq. [73]). In this case, e-damping by the
secular interaction is the dominant process that stabilizes Pan’s
eccentricity.
Since this eccentricity damping due to wave excitation is so

vigorous, one might wonder why Pan would even have a non-
zero eccentricity. However, as Spitale et al. (2006) point out, the
satellite Prometheus has a 16:15 resonance that does disturb
Pan, which may be responsible for sustaining Pan’s eccentricity
and the density waves that that satellite would launch at the outer
edge of the Encke gap.

5. SUMMARY AND CONCLUSIONS

The Lagrange planetary equations are used to study the sec-
ular evolution of a small planetary satellite as it orbits within
a narrow gap in a broad, self-gravitating planetary ring. These
equations show that an eccentric satellite’s secular perturbations
of the nearby gap edge tend to excite very longwavelength spiral
density waves that propagate out to greater distances in the ring.
These results are applied to the two small Saturnian satellite’s
Pan and Daphnis, which inhabit narrow gaps in the main A ring.
It is shown that these satellites can launch very low amplitude
(��/� < 0:4%) long waves whose wavelengths would be of or-
der k � 100s of km. The wavelength of these waves also shrinks
with distance due to the central planet’s oblateness, which causes
the spiral pattern to wind up as the waves propagate. It is also
shown that these long waves suffer only a modest amount of
viscous damping as they propagate toward the A ring’s outer
edge. A dispersion relation is derived for these waves, which
shows that a gap-embedded satellite can also excite short waves
whose wavelength is comparable to the ring’s scale height h.
However, these short waves are very nonlinear (��/� � 1) and
will damp soon after their excitation.
The Lagrange planetary equations are also used to derive the

amplitude and wavelength of the long waves, as well as the rate
at which this wave excitation tends to damp the satellite’s ec-
centricity. However, these analytic results are only valid when
the wavenumber k varies slowly across the first wavelength,
which requires the so-called critical mass �c to be sufficiently
small. Equation (46) shows that that occurs when the gap is
sufficiently narrow or when the central planet’s oblateness is
sufficiently small. If, however, this requirement is not satisfied,
then the rings model of Hahn (2003) can still be used to deter-
mine these waves’ properties and the rate at which this wave
action also damps the satellite’s eccentricity. Note that the am-
plitude of these waves is proportional to the satellite’s eccentric-
ity, so this e-damping also tends to terminate subsequent wave
generation.
The rings model shows that these undamped long waves will

eventually reflect at the ring’s outer edge (or at another gap in the
ring), which then spawns both long and short waves that prop-
agate inward. Since wave reflections eventually transmute all
longwaves into easily damped short waves, this process commu-
nicates the wave’s angular momentum content to the ring itself,
which also ensures that this wave phenomenon ultimately damps
the satellite’s eccentricity, too.
This eccentricity damping due to wave excitation is then com-

pared to the e-evolution rates that are due to the satellite’s in-
teraction with ring material orbiting at its Lindblad resonances

Fig. 6.—Simulation described in x 4.1 and Figs. 3Y5 extended to time t ¼
2:1 ; 105 orbits. During this time, the outbound long wave has since reflected at
the simulated disk’s outer edge at a/as ¼ 1:015 as a superposition of inbound
long and short density waves. The long-wavelength undulations seen in e(a) thus
represent the superposition of the outbound and inbound long waves, while the
high-frequency variations in e(a) are due to the slower moving short waves. See
x 4.2 for details.
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(which tends to pump up the satellite’s eccentricity) and corota-
tion resonances (which tends to damp the satellite’s eccentricity).
It is shown that e-damping due to wave excitation is the domi-
nant process when the gapwidth is sufficiently wide (see eq. [74]).
For the case of Pan, these e-damping and e-excitation rates
are all comparable to each other, but Daphnis’s e-evolution is
dominated by the Lindblad and corotation torques. And since
Daphnis’s long-term orbital stability requires e-damping to dom-
inate over e-excitation, these results also imply that particle mo-

tions at Daphnis’s corotation resonances are unsaturated, which
is necessary for the corotation torque to be operative here.
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ments on this work and Jayme Derrah for composing Figure 1.

REFERENCES

Abramowitz, M., & Stegun, I. A. 1972, Handbook of Mathematical Functions
(New York: Dover)

Binney, J., & Tremaine, S. 1987, Galactic Dynamics (Princeton: Princeton Univ.
Press)

Borderies, N., Goldreich, P., & Tremaine, S. 1985, Icarus, 63, 406
Brouwer, D., & Clemence, G. M. 1961, Methods of Celestial Mechanics (New
York: Academic)

Daisaka, H., Tanaka, H., & Ida, S. 2001, Icarus, 154, 296
Goldreich, P., & Sari, R. 2003, ApJ, 585, 1024
Goldreich, P., & Tremaine, S. 1981, ApJ, 243, 1062
———. 1982, ARA&A, 20, 249
Hahn, J. M. 2003, ApJ, 595, 531
———. 2007, ApJ, 665, 856
Jacobson, R. A., Spitale, J., Porco, C. C., Beurle, K., Cooper, N. J., Evans,M.W.,
& Murray, C. D. 2008, AJ, 135, 261

Murray, C. D., & Dermott, S. F. 1999, Solar System Dynamics (Cambridge:
Cambridge Univ. Press)

Porco, C. C., Thomas, P. C., Weiss, J. W., & Richardson, D. C. 2007, Science,
318, 1602

Porco, C. C., et al. 2005, Science, 307, 1226
Shu, F. H. 1984, in IAU Colloq. 75, Planetary Rings, ed. R. Greenberg &
A. Brahic (Tucson: Univ. Arizona Press), 513

Spitale, J. N., Jacobson, R. A., Porco, C. C., & Owen, Jr., W. M. 2006, AJ, 132,
692

Tiscareno, M. S., Burns, J. A., Nicholson, P. D., Hedman, M. M., & Porco, C. C.
2007, Icarus, 189, 14

Tiscareno, M. S., Hedman, M. M., Burns, J. A., Porco, C. C., Weiss, J. W., &
Murray, C. D. 2005, AGU Abstr. Fall, B245

Toomre, A. 1964, ApJ, 139, 1217
———. 1969, ApJ, 158, 899

SECULAR EVOLUTION OF CLOSE RING-SATELLITE SYSTEM 1581No. 2, 2008


