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ABSTRACT

A relatively simple prescription for estimating the number of debris clumps

n that form after a catastrophic tidal disruption event is presented. Following

the breakup event, it is assumed that the individual debris particles follow

keplerian orbits about the planet until the debris’ gravitational contraction

timescale tc becomes shorter than its orbital spreading timescale ts. When the

two timescales become comparable, self–gravity breaks up the debris train into

n ∼ L/D clumps, which is the debris length/diameter ratio at that instant. The

clumps subsequently orbit the planet independent of each other. The predicted

number of clumps n is in good agreement with more sophisticated N–body

treatments of tidal breakup for parabolic encounters, and the dependence of

n upon the progenitor’s density as well as its orbit is also mapped out for

hyperbolic encounters. These findings may be used to further constrain both

the orbits and densities of the tidally disrupted bodies that struck Callisto and

Ganymede. A cursory analysis shows that the Gomul and Gipul crater chains

on Callisto, which have the greatest number of craters among the known chains,

were formed by projectiles having comet–like densities estimated at ρ0 ∼< 1

gm/cm3.
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1. Introduction

The brief and dramatic appearance of Comet Shoemaker–Levy 9 (S–L 9) has

contributed to the notion that many small members of the solar system might be

strengthless ‘rubble-piles’, that is, material conglomerates having no significant structural

strength other than their self–gravity (e.g., Davis et al. 1979, Weissman 1986). As models

of the S–L 9 encounter with Jupiter indicate, only a relatively strengthless rubble-pile is

able to catastrophically disrupt into a cloud of debris that later condenses into twenty or

so gravitating clumps having the S–L 9 ‘string-of-pearls’ morphology (Asphaug and Benz

1994, 1996; Solem 1994). Further, it appears that similar events have occurred repeatedly in

the Jovian system, as evidenced by the crater chains that scar two of the Galilean satellites

with linear arrangements similar to the S–L 9 fragment chain (Melosh and Schenk 1993,

McKinnon and Schenk 1995, and Schenk et al. 1996).

N–body simulations of tidal breakup have been used to extract size and density

estimates of the S–L 9 progenitor with great precision (Asphaug and Benz 1994, 1996;

Solem 1994), and similar models are used to investigate the tidal disruption of asteroids

by Earth (Bottke et al. 1997a,b). An order–of–magnitude discussion of tidal breakup is

also given in Rettig et al. (1996). Below, the tidal disruption phenomenon is examined in

a heuristic fashion by comparing the relevant timescales: the debris spreading timescale ts
over which differential orbital motions cause the debris to spread, versus the contraction

timescale tc over which the debris self–gravity causes it to condense into a few clumps. This

comparison will demonstrate how the number of debris clumps formed depends upon the

projectile’s physical properties as well as its orbit. The intent of this analysis is not only to

complement the extant numerical studies of tidal disruption, but also to extend them to

as–yet unexplored regions of parameter space.

2. Breakup mechanics

In order to illustrate the phenomenon of gravitational recondensation of tidally

disrupted debris, consider the relevant timescales governing the debris’ evolution. After

a projectile is tidally disrupted, all of its debris particles are injected into distinct orbits

that cause them to drift apart largely along a single axis. By tracking their motions, the

spreading timescale ts over which the debris train grows in length is easily computed.

Concurrently, debris self–gravity endeavors to contract this material, and this proceeds over

a timescale tc. So long as ts � tc, the debris continues to spread relatively unimpeded

by its own gravity. But if tc should ever become smaller than ts, then the local gravity

will dominate the motions of the individual particles and the debris train will break up
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into distinct gravitationally bound clumps of material. Of course the clumps themselves

continue to drift apart due to their differing orbits. This was evidently the fate of Comet

Shoemaker–Levy 9 as well as the impactors responsible for the crater chains on the Galilean

satellites.

N–body simulations of this phenomenon have already shown that the resulting number

of clumps depends sensitively on the projectile’s initial density ρ0 and its periapse distance

r0. Since the orbit of Comet S–L 9 was known, Asphaug and Benz (1994) and Solem

(1994) were able infer its density with a high degree of precision. The primary virtue

of the following analysis is that it reveals how the number of clumps scales with ρ0 and

r0. And, as an application of the theory, the crater chains seen on the Galilean satellites

are considered, from which upper limits on the projectiles’ densities are estimated. Tidal

disruption of parabolic projectiles is addressed first, as this is the appropriate encounter

scenario for bodies like S–L 9 that are first captured by a planet from a heliocentric orbit.

The analysis is then repeated for hyperbolic encounters.

2.1. Parabolic encounters

The timescale ts over which the tidally disrupted debris grows in length is easily

estimated from simple two–body mechanics. It is assumed here that the incoming projectile

is on a parabolic orbit and is a non-rotating spherical body of radius R that remains intact

and undeformed until periapse passage. It is also assumed that the projectile breaks up into

numerous particles at this moment, and that each particle subsequently follows individual

keplerian orbits about the planet. At the moment of breakup, each debris particle has a

velocity V0 =
√

2GM/r0 perpendicular to the direction of the planet of mass M which lies a

distance r0 away from the projectile’s center, and G is the gravitation constant. The surface

particle nearest the planet has a specific energy E = −GM/2a1 = V 2
0 /2−GM/(r0 −R) and

periapse distance r0 −R = a1(1− e1), which yield its semi–major axis a1 and eccentricity e1:

a1 =
1 − β

2β
r0 and e1 = 1 − 2β, (1)

where β ≡ R/r0 is the dimensionless radius of the projectile. This particle enters an

elliptic orbit about the planet and remains at one end of the debris train. Similarly, the

surface particle furthest from Jupiter lies at the other end of the debris train and follows a

hyperbolic orbit with elements given by Eqn. (1) but with an opposite sign on β.

The trajectory of a debris particle formerly at the projectile’s center is r(t), which is
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governed by the parabolic orbit equation and Kepler’s equation:

r

r0
= 1 + tan2(θ/2) and

t

τ
=

√
2[tan(θ/2) + 1/3 tan3(θ/2)], (2)

where t is the time since periapse passage, τ ≡
√

r3
0/GM is the encounter timescale, and

θ is this particle’s true anomaly. The surface particle in the interior orbit has an elliptic

trajectory r1(t) given by

r1 = a1(1 − e1 cos E) and
t

τ
=
(

a1

r0

)3/2

(E − e1 sin E), (3)

where E is the particle’s eccentric anomaly, and its true anomaly θ obeys√
1 − e1 tan θ/2 =

√
1 + e1 tan E/2.

The debris length in units of the projectile’s diameter D = 2βr0 is L/D = |r− r1|/βr0,

which is easily computed numerically using Eqns. (2-3) and is displayed in Fig. 1. It has

been verified that this curve is indeed independent of β when β � 1. This computation is

essentially that of Scotti and Melosh 1993, who also neglect debris gravity but do include

perturbations by the Sun and other planets, and yielded the first size estimate of the S–L 9

progenitor based on comparisons to early observations of the Comet. Figure 1 also includes

results from an N–body simulation of the S–L 9 encounter with Jupiter, which shows

that the simple prescription employed here is sufficiently accurate (for these purposes)

for estimating the length of the tidally disrupted debris over time. The good agreement

between the two approaches is also noted by Asphaug and Benz (1996).

From Fig. 1, the debris spreading timescale ts ≡ L/(dL/dt) is computed numerically

and plotted against the debris length L/D in Fig. 2. As one might expect of debris in

highly eccentric orbits, their spreading timescale increases as their orbital motions slow

with distance from the planet.

2.2. Gravitational contraction

Since ts grows over time, it is possible that the debris spreading due to its orbital

evolution becomes so slow that its local gravity can cause it to clump up, creating

a morphology similar to the S–L 9 ‘string of pearls’. The timescale for gravitational

contraction will vary as the free-fall timescale tc = α/
√

Gρ, where ρ is the debris density.

If the debris were a stationary cloud of collisionless particles, then the free-fall time has

α =
√

3π/32 ' 0.54 (Binney and Tremaine 1987). However tidally disrupted debris is

neither, so a larger value for α is anticipated due to the particles’ motions.
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Inspection of the N–body simulations shows that the debris spreads largely along a

single axis (Asphaug and Benz 1994, 1996), hence, its density varies as ρ ∼ ρ0D/L where

ρ0 is the projectile’s initial density. The gravitational contraction timescale is then

tc
τ

∼ α

√
ρc

ρ0

L

D
(4)

where ρc ≡ M/r3
0 is the critical density. The critical density is termed thus since an inviscid

body on a parabolic orbit will suffer tidal disruption only if its density obeys ρ0 ∼< 1.16ρc

(Sridhar and Tremaine 1992). Figure 2 plots tc/τ against L/D for various values of ρ0/ρc

and assuming α ' 1; this choice of α is justified below.

So long as ts < tc, the debris elongates due to their orbital motions. But once

tc < ts, local gravity will contract the debris at a rate faster than it is spread by its orbital

motions. In this regime, gravitational contraction of each forming clump will proceed

homologously across the debris’ shortest spatial scale, its diameter D. This produces

n ∼ L/D gravitationally bound clumps condensing from the debris, where L is the debris

length at the moment when tc ∼ ts. This quantity may be obtained directly from the

ordinate of Fig. 2 where the timescales tc and ts cross for a given value of ρ0/ρc.

In order to calibrate the unknown parameter α, results from the Asphaug and Benz

(1994) N -body simulation of the S–L 9 breakup is used as a standard. To obtain n = 20

fragments from a projectile of density ρ0 = 0.5 gm/cm3 encountering a planet of mass

M = 1.9× 1030 gm at a periapse distance of r0 = 9.4× 104 km, for which ρc = 2.29 gm/cm3

and ρ0/ρc = 0.22, a value of α = 0.94 is required (see Fig. 2). However it may only be

concluded that α is of order unity as this simple treatment also ignores other effects such

as the tidal elongation the projectile suffers during the moments before breakup. From

Fig. 2 it is evident that the resulting number of clumps depends rather sensitively on the

projectile’s density due to the fact that the ts and tc curves have a rather similar power–law

dependence.

Figure 3 shows the estimated number of clumps n ∼ L/D that form as the debris train

breaks up (ie., when tc = ts) as a function of projectile density ρ0/ρc. The data points

accompanying this figure are from N–body simulations of S–L 9 type tidal disruption events

(Asphaug and Benz 1994, Solem 1994). Asphaug and Benz (1994) quote only lower limits

on the number of clumps produced in their simulations, perhaps because the distinction

between gravitating clumps and unconsolidated material is a subjective one. Thus their

results are represented by arrows in Fig. 3. Those models also indicate that at least 500

to 1000 particles are necessary to numerically resolve all the clumps produced by S–L 9’s

disruption. Since fewer particles were employed in the Solem (1994) models, those results

are also interpreted here as lower limits. From this comparison it may be concluded that



– 7 –

the very general (and simple) timescale analysis employed here agrees qualitatively with

the far more CPU-intensive N–body simulations that are available in the literature.

2.3. Hyperbolic encounters

The preceding analysis is now extended to hyperbolic projectiles that approach close

enough to a planet to tidally disrupt. The incoming projectile’s orbit elements may be

written a0/r0 = −(Ve/V∞)2/2 and e0 = 1 − r0/a0, where r0 is again the periapse distance

of the projectile’s center, Ve =
√

2GM/r0 is the planet’s escape velocity at periapse, and

V∞ is the projectile’s velocity far from the planet. As before, the spherical, non-rotating

projectile is assumed to remain intact and undeformed until periapse, after which it breaks

up and its debris follows keplerian orbits. The specific energy of the surface particle nearest

the planet again provides its orbit elements:

a1

r0
=

(
r0

a0
+

2β

1 − β

)−1

and e1 = e0 − β(1 + e0). (5)

The trajectories ri for particles i = 0 (which lies at the center of the debris train) and i = 1

(which lies at one end of the train) are given by

ri = a1(1 − ei cosh E) and
t

τ
=
(
−ai

r0

)3/2

(ei sinh E − E), (6)

where E is the eccentric anomaly and the true anomaly θi is obtained from

ei cos θ = (1 − β)(1 + ei)/(ri/r0) − 1 with β = 0 for particle 0. The debris length

L/D = |r0 − r1|/βr0 is obtained numerically by solving Eqns. (6) for various values of the

projectile’s dimensionless velocity V ≡ V∞/Ve (see Fig. 4). Note that slower projectiles

produce longer debris trains since the planet is more effective at scattering the debris

particles through a wider spread of angles. From the curves in Fig. 4, the debris spreading

timescale ts = L/(dL/dt) is computed and displayed in Fig. 5 versus L/D.

Figure 5 also shows the debris’ gravitational contraction timescale tc/τ , Eq. (4), for

various projectile densities ρ0/ρc. As before, the estimated number of clumps formed when

local gravity breaks up the debris train is simply the value of L/D where these timescale

curves cross. The results from this procedure are summarized in Fig. 6 which shows the

number of clumps formed versus projectile density ρ0/ρc for selected velocities V . The

V = 0 curve is for a parabolic projectile that also appears in Fig. 3, and has a power–law

dependence distinct from the hyperbolic projectiles. This is due to the faster growth rate

of parabolic debris, which varies as L ∼ t4/3 (Sridhar and Tremaine 1992), whereas the

hyperbolic debris elongates linearly with time.
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It is important to keep in mind that all of the curves presented here are for a spherical

non-rotating projectile. For this reason Fig. 6 does not include data from the only N–body

simulation of a hyperbolic encounter presently available (e.g., Bottke et al. 1997a), since

that projectile was elongated by a factor of 1.8 and rotating at about 40% of its centrifugal

limit. Nonetheless, this region of parameter space warrants further exploration. It is likely

that Fig. 6 underestimates the number of clumps that would be formed after the disruption

of an elongated projectile. And, as Asphaug and Benz (1994) and Solem (1994) show,

prograde rotation lengthens the debris train and produces greater numbers of clumps,

whereas retrograde rotation yields a shorter train with fewer clumps. Furthermore, a

projectile having a rotation axis in the orbit plane will likely have a more distended debris

train which will impede its subsequent contraction and increase the number of clumps

formed.

3. Crater chains

The preceding results can also be applied to the crater chains seen on the Galilean

satellites Ganymede and Callisto, which were likely formed by tidally disrupted bodies

striking the satellites on the outbound legs of their orbits (Melosh and Schenk 1993,

McKinnon and Schenk 1995, Schenk et al. 1996). It will be assumed here that these bodies,

like S–L 9, disrupted catastrophically into numerous debris particles which subsequently

recondensed into n clumps before impacting the satellite and creating a linear chain of n

craters. Since the impactors’ orbits are constrained by tidal disruption requirements, upper

limits on the projectiles’ densities ρ0 are obtained directly.

Ganymede and Callisto orbit Jupiter at a distance of rs = 15.0 and 26.3 RJ ,

respectively, where RJ = 7.15 × 104 km is the radius of Jupiter. If a projectile responsible

for a crater chain was a long–period comet on a parabolic orbit about the Sun, it would

approach the Jovian system with a velocity that is of order V∞ ∼
√

2GM�/aJ , where M�
is the mass of the Sun and aJ is Jupiter’s semi-major axis. Thus its dimensionless velocity

V ≡ V∞/Ve is limited to

V ∼<
√

rs

aJ

M�
M

(7)

since a projectile’s periapse r0 < rs must lie interior to the satellite’s orbit. This limits

V ∼< 1.2 (1.6) for Ganymede (Callisto). However McKinnon and Schenk (1995) argue that

short–period comets with velocities V∞ ' 4.5 to 8 km/sec dominate the flux of bodies

encountering Jupiter; if the latter velocity is adopted here then V ∼< 0.5 (0.7) for Ganymede

(Callisto).
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The tightest density constraint is obtained from the Gomul crater chain on Callisto,

which has n = 25 craters (Schenk et al. 1996). Examination of Fig. 6 shows that this

projectile had a density 0.06 ∼< ρ0/ρc ∼< 0.2 for V ∼< 0.7. Since the projectile’s periapse must

lie outside of the planet, r0 > 1RJ and thus ρ0 ∼< 1.0 gm/cm3. A similar estimate is obtained

for the n = 18 Gipul crater chain on Callisto, and the projectiles that formed the remaining

crater chains reported by Schenk et al. (1996) may be shown to have maximal densities

estimated at ρo ∼< 1.6 to 2.4 gm/cm3. While this analysis does not place particularly tight

limits on the densities of most of these projectiles, these findings are consistent with the

Gomul and Gipul crater chains as being due to impacts by tidally disrupted cometary

debris rather than due to asteroidal debris. However, placing tighter constraints on the

projectiles’ densities would require extracting the projectiles’ orbits (e.g., r0 and V∞) from

the crater record.

4. Summary and conclusions

A simple algorithm that estimates the number of clumps n that form after a

catastrophic tidal disruption event is obtained. It is assumed here that a projectile

approaches the planet undeformed, and that following breakup, the debris particles follow

keplerian orbits until their gravitational contraction timescale tc becomes comparable to

their spreading timescale ts. Even though these assumptions ignore the consequences of

the tidal distortion and torque suffered by the incoming projectile, the resulting debris

evolution (e.g., Fig. 1) is in good agreement with more sophisticated treatments. It is

argued here that once the spreading and contraction timescales become comparable, the

debris breaks up into n ∼ L/D gravitationally bound clumps having a morphology similar

to S–L 9’s fragmented appearance.

This treatment compares favorably with existing N–body treatments of tidal breakup

of parabolic encounters, and the analysis is extended to hyperbolic encounters. Disrupted

projectiles that encounter the planet at higher velocities V ≡ V∞/Ve > 0 will be scattered

into trajectories having a smaller angular spread. This results in more compact debris that

breaks up into fewer numbers of clumps at distances closer to the planet (see Fig. 5). Thus

if the projectiles responsible for the chains of n ∼ O(10) craters on Ganymede and Callisto

were hyperbolic (i.e., V ∼> 1), then they surely had comet–like densities ρ0 ∼< 0.1ρc ∼ 0.5

gm/cm3 (from Fig. 6 and noting that periapse must lie outside the planet). But if these

projectiles were parabolic (i.e., V � 1), then only rather soft limits (e.g., ρ0 ∼< 1.0 to 2.4

gm/cm3) on their estimated densities are obtained.



– 10 –

Acknowledgements

The authors thank Bill Ward for his thoughts and assistance with this work. This

paper is Contribution 947 from the Lunar and Planetary Institute, which is operated by the

Universities Space Research Association under NASA Contract NAGW–4575.



– 11 –

REFERENCES

Asphaug, E. and W. Benz (1994). Density of Comet Shoemaker–Levy 9 deduced by

modeling breakup of the parent ‘rubble pile’. Nature 370, 120–123.

Asphaug, E. and W. Benz (1996). Size, density, and structure of Comet Shoemaker–Levy 9

inferred from the physics of tidal breakup. Icarus 121, 225–248.

Binney, J. and S. Tremaine (1987). Galactic Dynamics, pg. 37. Princeton University Press,

Princeton, NJ.

Bottke, W. F. D. C. Richardson, and S. G. Love (1997). Can tidal disruption of asteroids

make crater chains on Earth and Moon Icarus 126, 470–474.

Bottke, W. F., D. C. Richardson, and S. G. Love, (1997). Production of Tunguska–sized

bodies by Earth’s tidal forces. Planetary and Space Science, in press.

Davis, D. R. C. R. Chapman, R. Greenberg, and S. J. Weidenschilling (1979). Collisional

evolution of asteroids: populations, rotations, and velocities. In Asteroids (T.

Gehrels, Ed.), pg. 528–557. Univ. of Arizona Press, Tuscon.

Melosh, H. J. and P. Schenk (1993). Split comets and the origin of crater chains on

Ganymede and Callisto. Nature 365, 731–733.

McKinnon, and Schenk, (1995). Estimates of comet fragment masses from impact crater

chains on Callisto and Ganymede. GRL 22, 1829–1832.

Rettig, T. W., M. J. Mumma, G. J. Sobczak, J. M. Hahn, and M. DiSanti (1996). The

nature of comet Shoemaker–Levy 9 subnuclei from analysis of preimpact Hubble

Space Telescope images. JGR 101, 9271–9281.

Scotti, J. V., and H. J. Melosh (1993). Estimate of the size of comet Shoemaker–Levy 9

from a tidal breakup model. Nature 365, 733–735.

Schenk, P. M., E. Asphaug, W. B. McKinnon, H. J. Melosh, and P. R. Weissman (1996).

Cometary nuclei and tidal disruption: the geologic record of crater chains on Callisto

and Ganymede. Icarus 121 249–274.

Solem, J. C. (1994). Density and Size of Comet Shoemaker–Levy 9 deduced from a tidal

breakup model. Nature 370, 349–351.

Sridhar, S. and S. and Tremaine (1992). Tidal disruption of viscous bodies. Icarus 95,

86–99.



– 12 –

Weissman, P. R. (1986). Are cometary nuclei primordial rubble piles? Nature 320, 242–244.

This preprint was prepared with the AAS LATEX macros v4.0.



– 13 –

FIGURE CAPTIONS

Fig. 1.— The length of the debris train L/D plotted against time t/τ (thick curve) and

against radial distance r/r0 from the planet (thin curve). The data points are L/D from

the Asphaug and Benz (1996) N–body simulation of the S–L 9 encounter, plotted versus

time (•) and distance (open box). The discrepancy evident just after breakup is due to the

fact that this analysis does not account for the tidal elongation experienced by the model

projectile as it approached periapse.

Fig. 2.— The debris spreading timescale ts/τ versus debris length L/D (thick curve). Time

and distance from the planet advance to the right. Note that ts is initially large due to the

debris’ slow growth when L/D ∼< 1.5 (see Fig. 1). Also plotted is the gravitational contraction

timescale tc/τ versus L/D for selected projectile densities ρ ≡ ρ0/ρc. Gravitational

contraction is impossible while the debris still lies within the planet’s modified Roche limit

r/r0 < 1.05(ρc/ρ0)
1/3 (Sridhar and Tremaine (1992)), which is indicated by the dotted curves.

The estimated number of clumps n is simply the value of L/D where the two timescales cross.

To calibrate this analysis with the N–body models of the S–L 9 breakup requires α = 0.94,

which yields n ∼ L/D = 20 clumps where the ts/τ timescale crosses the tc/τ curve for

ρ = 0.22, which is indicated by the dot.

Fig. 3.— The estimated number of clumps n versus projectile density ρ0/ρc. The data

points are from the Asphaug and Benz (1994) (•) and Solem (1994) (+) models of the S–L

9 breakup, with the arrows indicating lower limits. The upper density axis is scaled for the

S–L 9 encounter which has ρc = 2.29 gm/cm3.

Fig. 4.— Debris train length L/D versus time t/τ for selected values of the projectile velocity

V ≡ V∞/Ve. The V = 0 curve is for the parabolic projectile also shown in Fig. 1.

Fig. 5.— The debris spreading timescale ts/τ versus debris length L/D for various velocities

V ≡ V∞/Ve (thick curves). The narrow curves give the debris contraction timescale tc/τ

versus L/D for various projectile densities ρ ≡ ρ0/ρc and α = 0.94. The value of L/D where

these curves cross is the estimated number of clumps formed when the debris train breaks

up.

Fig. 6.— The estimated number of clumps n versus projectile density ρ0/ρc for various

projectile velocities V ≡ V∞/Ve. The V = 0 curve is for the parabolic projectile given in Fig.

3. The upper density axis is scaled for an encounter at Earth having an arbitrary perigee

distance r0 = 1.5 Earth–radii for which ρc = 2.29 gm/cm3.
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Fig. 1.
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Fig. 2.
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Fig. 3.
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Fig. 4
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Fig. 5
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Fig. 6


