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Abstract - Sommario

ThisPh.D. thesisdiscussesvortex dynamics and particle transport by coherent vor-
tices in homogeneous, rapidly rotating, turbulent fluids. The approach is both ex-
perimental and numerical. Applicationsto geophysical fluid dynamics are related
to the study of large-scale maotionsin the atmosphere and the oceans, where coher-
ent vortices are an important component of the dynamics. After abrief discussion
of the properties of barotropic turbulence and its relevance to geophysics, | con-
sider vortex dynamics in large-scale laboratory experiments. These are aimed at
studying the emergence and development of coherent vortices in a shallow layer
of homogeneous fluid in free decay, initially forced in order to create unstructured
turbulence. The Lagrangian aspects of these experiments are also pointed out,
and the transport of passive tracers in such a turbulent field with fully developed
coherent vortices is described. Tracer dynamics is studied by using both experi-
mental evidence and a mixed, experimental-numerical technique which allows to
obtain trajectories of individual tracers. The problem of the dynamics of real par-
ticles embedded in a fluid (impurities) is finally considered; ideal fluid particles
are point-like and massless, but real particles have finite size and their density may
differ from the density of the surroundingfluid. The dynamicsof impuritiesisthen
discussed by means of numerical simulations, both in simple stationary flows char-
acterized by the presence of vortex structures, and in barotropic turbulence with
fully-devel oped coherent vortices. Special attention is given to neutrally-buoyant
tracers, whose finite size may change the dynamical behaviour with respect to fluid
particles, in flows where vortices are an important component.

Questatesi di dottorato tratta delladinamica di vortici e del trasporto di particelle
da parte di vortici coerenti in fluidi turbolenti, omogenei e rapidamente rotanti.
L'approccio € sia di tipo sperimentale che di tipo numerico, e le applicazioni
alla fluidodinamica geofisica sono in relazione alo studio dei moti a grande scala
nell’atmosfera e negli oceani, dove i vortici coerenti costituiscono un’importante
componente della dinamica. Dopo una breve discussione sulle proprieta della tur-
bolenza barotropica e sulla sua rilevanza in geofisica, mi occupo della dinamica
di vortici in esperimenti di laboratorio a grande scala, finalizzati alo studio della
nascita e sviluppo di vortici coerenti in uno strato sottile di fluido omogeneo in
decadimento libero, inizialmente forzato in maniera tale da creare una turbolenza
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non strutturata. Vengono anche illustrati gli aspetti Lagrangiani di tali esperimenti

e viene descritto il trasporto di traccianti passivi in un tale campo turbolento ca-

ratterizzato da vortici coerenti pienamente sviluppati, sia mediante risultati deri-
vati dagli esperimenti, sia mediante I’ utilizzo di una tecnica mista sperimentale-
numerica, che permette di ottenere le traiettorie di traccianti individuali. Viene
infine preso in considerazione il problema della dinamica di particelle reali im-
merse in un fluido (impuritd); le particelle di fluido ideali sono puntiformi e non
hanno massa, ma le particelle reali hanno una dimensione finita e la loro densita
puod essere diversa da quella del fluido che le circonda. Viene dunque discussa
la dinamica delle impurita per mezzo di ssimulazioni numeriche effettuate sia in
semplici flussi stazionari caratterizzati dalla presenza di strutture vorticose, siain
turbolenza barotropica con vortici coerenti pienamente sviluppati. Speciale atten-
zZionevienepostaal caso dei traccianti con lastessadensitadel fluido, le cui dimen-
sioni finite possono modificare il comportamento dinamico rispetto ale particelle
di fluido, influssi in cui i vortici sono una componente importante.



| ntroduction

September 5th, 1996: hurricane ” Fran” slams into North Carolina’s southern coast
in USA, with sustained winds of approximately 190 km/h and gusts as high as
200 km/h. Flooding is a severe problem in the whole area hit by the hurricane
(see figure 1), which produces rainfall amounts of over 250 millimiters in parts
of eastern North Carolina and western Virginia. This hurricane, as the ones that
almost every year hit United States and Caribbean area, originated as a tropical
cyclone over the Atlantic Ocean and moved towards the mainland, where it finally
released al itslarge amount of energy and destructive power.

Such a phenomenon is an example of a coherent vortex structure in nature,
wheretheattribute” coherent” pointsat thelong lifetime and the well-definite shape

Figure 1: Hurrican "Fran” viewed by a satellite image. It is possible to recognize the coast of
Florida (USA). Photo downloaded from the web site of the National Climatic Data Center (NCDC).



Figure 2: The bright areain the image (taken by the satellite ERS by meansof SAR technique) is
caused by an anticyclonic warm eddy in the Gulf of Tehuantepec, which islocated at the Pacific coast
of Mexico. Photograph downloaded from the web site of the Institute of Oceanography in Hamburg.

of the vortex. Geophysical flows are characterized by the presence of strong vorti-
cal structures, which have fundamental importance for the overall transport of heat,
salt, moisture and particles both in oceans (see figure 2) and in atmospheres (not
only in Earth’s atmosphere, but also in the atmospheres of outer planets of Solar
System: figure 3 shows the well-known Jupiter’s Great Red Spot).

For these reasons, Geophysical Fluid Dynamics includes the study of vortex
dynamics and the associated transport properties as key issues for the understand-
ing of the dynamics of the oceans and the atmosphere, with the final purpose of
predicting, for instance, extreme events such as the one described above.

The last two decades have seen a large production of papers devoted to the
study of some approximations of the Navier-Stokes equationsfor Fluid Dynamics,
such as the barotropic quasi-geostrophic or the two-dimensional approximations;
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Figure 3: This Voyager 2 image shows the region of Jupiter extending from the equator to the
southern polar |atitudes in the neighborhood of the Great Red Spot. Photo downloaded from the web
siteof NASA.

this strong interest has been motivated by the fact that such approximations show
much of the phenomenology of the nonlinear dynamics that can be observed in
large-scale geophysical flows when rotation dominates.

Oneof these phenomenathat are captured, for instance, by thetwo-dimensional
approximation of the Navier-Stokes equationsis the devel opment of coherent vor-
tices emerging from a turbulent, unstructured background. These flow structures
are shown to carry most of the energy of the turbulent system and to dominate the
dynamics of the flow at |ate times.

Coherent vortices show also peculiar characteristics with respect to the trans-
port of passivetracersin aturbulent field: numerical simulationsshow that vortices
are able to trap tracers for long times, much longer than the typical rotation time
scale inside the vortex (eddy turnover time), and are generally impermeable to in-
ward fluxes of particles. They are aso areas of the flow where fluid particle motion
isregular, rather than chaotic asin unstructured turbulence.

These properties are strictly valid when considering point-like and massless
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fluid elements, more than particles with finite size and/or finite inertia with re-
spect to the fluid. Inthislatter case, the dynamical behaviour can be significantly
changed.

ThisPh.D thesisadds a further piece to the puzzle of understanding vortex dy-
namics and transport of particles by coherent vortices in turbulent flows relevant
for Geophysical Fluid Dynamics. The approaches | have followed to this pur-
pose are both experimental and numerical: laboratory experiments on quasi two-
dimensional, large-scal e turbulent flows and numerical simulations on the dynam-
ics of finite-size particles with inertia ("impurities”) are the main topics included
in thisthesis, whose organization is the following:

Chapter 1: inthischapter, the theory of barotropic turbulenceis briefly sum-
marized. The governing equations of some approximations of the Navier-
Stokes equations are discussed, and the process of emergence and devel op-
ment of coherent vorticesis described.

Chapter 2: large-scale laboratory experiments on the dynamics of long-
lived coherent vorticesin rapidly rotating, barotropic flowsin free decay are
presented and discussed.

Chapter 3: A laboratory view on transport of passive tracers by coherent
vortices is the topic of this chapter: trapping of tracers and regular motions
inside vortex cores, impermeability of vortices to inward fluxes of particles
and merging of two vortices from the Lagrangian point of view are the phe-
nomena considered.

Chapter 4: this chapter is devoted to introduce the equation of motion for
finite-size particles with inertia ("impurities’), whose dynamics can be very
different from the dynamics of fluid elements (" Lagrangian particles’).

Chapter 5: the dynamics of impuritiesin simple, stationary, analytical vor-
tical flow modelsis the subject of this chapter.

Chapter 6: the dynamics of impurities in barotropic two-dimensional tur-
bulence will be discussed, by using the results obtained in the analytical
vortical flow models.

Chapter 7: the specia case of the dynamics of tracers with finite-size and
the same density as the surrounding fluid is considered and bias ses with
respect to Lagrangian particles statistics are pointed out.
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Chapter 1

Barotropic turbulence

In this chapter, the theory of barotropic turbulence is briefly summarized, for the
case of an homogeneous and incompressible Newtonian fluid. This fundamental

hypothesisis assumed throughout thisthesis. The governing equationsof barotropic
guasi-geostrophic turbulence and two-dimensional turbulence are discussed and

the process of emergence and development of coherent vortices is described, from
both a numerical and an experimental viewpoint. Applicationsto geophysical fluid

dynamics are also mentioned.
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1.1 Basic conceptsof fluid dynamics

The starting point in the study of fluid dynamics is provided by the continuum
assumption, which allows to use continuity and derivability for the variables by
which a fluid is described: density, pressure, velocity, temperature, etc. Two ap-
proaches are possible to describe such afluid; in the Eulerian approach, a generic
variable F depends on time and on the position vector r = (z, y, z), thusin every
point of space, avalue F = F(r,t) may be associated at a certain timet. In the
Lagrangian description of the fluid, the generic variable F is associated with the
motion of every fluid element, thusit depends on time and on the position of the
fluid element at theinitial time: F' = F(ro, ¢); in particular, the vector r = r(ro, t)
describes the trajectory of a fluid element. The link between the two approaches
can be found in the definition of the total time derivative of a generic Eulerian vari-
able F of the fluid, given by the material derivative following the motion of afluid

element:
DF oF

i = Bt (u-V)F, (1.2)
where u(r, t) = (u,v,w) is the velocity vector and V is the gradient operator.
The material derivative performs the task of representing an essentially Lagrangian
concept, in an Eulerian language.

By using such an Eulerian approach, the dynamics of an homogeneous, in-
compressible, Newtonian fluid moving in a steadily rotating reference frame can
be described. Such a flow is governed by the Navier-Stokes equation, describing
the balance of momentum, and by the continuity equation, which represents the
conservation of mass:

Du

1
E—I—2ﬂ><u—|—ﬂ><(ﬂxr):—;Vp—l—Vqﬁg—l—l/V2u, (1.2)

V.ou=0, (13)

where D/ Dt isthe material derivative, u (r, t) isthe velocity vector relative to the
rotating system, r is the position vector, £ isthe angular velocity of the rotating
reference frame, p isthe pressure, ¢, isthe gravitational potential, p isthe constant
fluid density, v isthe constant kinematic viscosity and V 2 isthe |aplacian operator.
Seg, for example, Kundu (1990) for a derivation of these equations.

Inthel.h.s. of equation (1.2), the first term represents the fluid acceleration in
the rotating system, the second term isthe Coriolis acceleration and the third term
isthe centripetal acceleration, which can be written as the gradient of a centrifugal
potential, - V¢, = -V (|n X r|? /2) , and combined with the term V¢ in the
r.n.s., by defining a total potential & = ¢, + ¢.. The first term in the r.h.s. of
the Navier-Stokes equation represents the pressure gradient-force (per unit mass),
the second term isthe conservative gravitational force and the last term is the non-
conservative viscous force for Newtonian, incompressible fluids (for which the
continuity equation (1.3) isvalid).
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The relative vorticity vector isdefined asw = V x u. By taking the curl of
equation (1.2) and using adequate vector identities, the relative vorticity equation
reads (see Pedlosky 1987 for a complete derivation):

Dw
Dt
where (29 + w) is usually defined as the absolute vorticity vector and the baro-

VpxV(p—p®)
2

= [(2Q 4 w) - V]u + vV, (1.4)

clinic vector, i.e. , vanishes for constant p; the fluid in this case

isreferred to as barotropic.
By using a length scale L and a velocity scale U which characterize the flow,
nondimensional variables can be introduced, denoted by primes:

r=r/L,
u =u/U, (1.5)
t'=t(U/L).

Equations (1.2) and (1.4) can then be adimentionalized, by setting @ = Qk where
k is the unit vector along the axis of rotation. The relative acceleration term in
equation (1.2) can be estimated as Du/Dt = O (U?/L), the Coriolis acceleration
as 20k x u = O (2QU) and the frictional force (per unit mass) as vVZu =
O (vU/L?). Theratio of the relative to the Coriolis acceleration in equation (1.2)
isreferred to as the Rossby number:

U
- 20L°
In the same way, the ratio of the relative accel eration to the frictional force per unit

mass is the Reynolds number, and the ratio of the frictional force per unit massto
the Coriolis acceleration isreferred to as the Ekman number:

Ro (1.6)

Re= %, (L7
v
v

Strong rotating flows or large scale flows have small Rossby and Ekman numbers
(< 1); turbulent flows have, in general, large Reynolds numbers (Re >>> 1000).

In geophysical fluid dynamics, particular importance is given to the concept
of potential vorticity, which satisfies a conservation law, under certain constraints.
If one considers a scalar fluid property A, which satisfies an equation of the form
D)/Dt = ¥, where ¥ isa source term of A, from equation (1.4) one can derive
that the potentia vorticity

20
m= 221 g\ (1.9)
P
isamaterial invariant, i.e.
DIl
— = 1.10
D =0 (1.10)

if the following constraintsare valid:
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e ¥ = 0, namely X\ isamaterial invariant;
e theviscousforce isnegligible, namely v = 0 or Re > 1;
e either thefluid is barotropic or A dependsonly on p and p.

Thisisthe Ertel theorem, whose demonstration can be found in Pedlosky (1987).
Another important theorem of basic fluid dynamics, which | will use widely
in the following, is the Taylor-Proudman theorem, which is valid for barotropic,
inviscid and fast rotating flows, namely for homogeneous flows with small Ekman
and Rossby numbers. Under these hypothesis, scale analysis performed in the
relative vorticity equation (1.4) leads to neglect both the viscousterm and the term
Dw/ Dt with respect to the term [(22 4+ w) - V]u. Furthermore, if the Rossby
number issmall, w < 29 sincew = O(U/L), thus equation (1.4) reduces to the
constraint:
(2€2-Vju=0, (1.12)

which, in the case the rotation axisis parallél to the z axis, means:

ou Ov Ow

E_E_E_O' (1.12)
It follows from (1.12) and from the continuity equation (1.3) that the velocity in
planes perpendicular to £ must be independent of the coordinate parallel to £
and that in planes perpendicular to the rotation axis, the velocity is nondivergent.
Furthermore, if the vertical component w of the velocity is zero at some level, for
example at a rigid, horizontal surface, it rns zero for al z. The motion is then
completely two-dimensional and can be described as moving in columns of fluid,
the so-called Taylor columns, each column oriented parallel to therotation axisand
moving so as to maintain this orientation (Taylor 1923).

1.2 Thegoverning equations of barotropic turbulence

The Navier-Stokes equations, in the form (1.2), describe the dynamics of the most
general, incompressible, rotating Newtonian flow. If the fluid has an homogeneous
density, or more generally the isopycnal surfaces are parallel to the isobars, it is
referred to as barotropic fluid. If the flow has a low Reynolds number, it is re-
ferred to as laminar flow. Barotropic turbulent flows, with high Reynolds number
(typically Re > 1000), may be described, under suitable hypotheses, by differ-
ent approximations of the Navier-Stokes equations, such as the shallow-water, the
quasi-geostrophic and the two-dimensional approximations, which show much of
the phenomenology of the nonlinear dynamics that can be observed in large-scale,
turbulent geophysical flows, when rotation dominates.

In the following, these three approximations are examined, and the governing
equations are derived.

14



1.2.1 Shallow-water approximation

Consider an homogeneous, incompressible, rotating fluid layer with afree surface
whose height above a flat bottom is given by k (z,y,t), asin figure 1.1. The
reference frame is chosen in such a way that the gravity vector, g = —gk, is
antiparallel to the vertical axis z, and the rotation axis coincides with the z-axis,
i.e, 2 = Qk, where k is the unit vector of the z-axis. The velocity vector has
componentsu, v and w paralléel to the x-, y-, z-axis respectively.

. -

/’VT

P= CONSTANT
D

Figure 1.1: Sketch of the shallow-water model for arotating fluid layer.

The complete Navier-Stokes equations and the continuity equation for such a

fluid mode! read:
Jdu Jdu Jdu du 19P

JR— R JR— - [ — 2
3t+u3m+v3y+wﬁz Y p3m+yvu

@ v v v

3_w_|_ 8_w_|_v8_w_|_ a_w—_la_P_|_,/V2w
ot 0 oy 0 0z ’
Ju Ov OJw
oe oy o =0 (1149

where f = 2Q is the so-called Coriolis parameter, P = p — p® is the reduced
pressure and p and v are the density and the kinematic viscosity coefficient respec-
tively.

Thefundamental hypothesisof the shallow-water model isthat the scale depth
of thefluid layer, D, is much smaller than the horizontal length scale L, i.e., that

D
~ <« 1. 1.15
7 < (1.15)
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If this hypothesisis satisfied, and if we consider the interior of the fluid layer (far
enough from the bottom, in order to be outsidethe boundary layer), it followsfrom
the scale analysis of the Navier-Stokes equationsfor the x- and y-component of the
velocity that the pressure scale must be given by the largest of the following entries
(Pedlosky 1987):

U? vU
PL [Ta fUa ﬁ‘l o ’ (116)

where U isthe horizontal velocity scale, and the advective time scale is supposed
to be of the same order as the local time scale and that the vertical velocity scale,
W, isO (DU/L), as indicated by the scale analysis of the continuity equation.
Thisimpliesthat the ratio between the material derivative and the vertical pressure
gradient in the equation for the w-component of the velocity is.

| Dw/ Dt| D? Ro
_olY 1.17
P loP/a-] Ol 2 [, Ro, Ekyl, )’ (1.17)

and the ratio of the viscousterm to the vertical pressure gradientis: :

|1/V2w| _ D_2 Eky
Plopjez] ~ O\ 71, Ro, Byl ) (1.18)

where Eky = v/ fD? isreferred to asthe vertica Ekman number. It turns out that
the quantitiesin the round brackets are smaller than or equal to (D/L)? for every
Rosshby and Ekman number; thus, given the hypothesis (1.15), the most important
term in the equation for the vertical component of the velocity is the vertical pres-
sure gradient (see Pedlosky 1987, p. 60, for details). Thefluidisthenin hydrostatic

approximation, since:
i) D\?
L= —pg+0 l<f> ] , (119)

where | used thefact that —g = 0®/0z. By integrating equation (1.19) and using
the fact that the pressure at the surface level is given by a constant value py, it
comes out that the pressure at any pointis simply given by:

p=pg(h— z) + po, (1.20)

which implies that the horizontal pressure gradient is independent of z, i.e,

dp oh
oz~ "oa 121
op  0Oh (1.2)
8_y_pg¢?_y’

so that the horizontal accelerations must also be independent of z (note that for
the horizontal pressure, 0 P/dz = dp/d0x and 9P/dy = dp/0dy ). It followsthat
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the horizontal velocity does not depend on the vertical coordinate if the horizontal
components are initially independent of z, namely the horizontal motion is decou-
pled from the vertical one, and it may be described by the following equations:

%‘F %‘F %_f — %_|_ 62_u+62_u
ot "oz "oy T'T 99: TV \ 622 T 9y2 )
(1.22)
@4_”@4_1,@4_]"”—_ %4_,, &4_&
ot "oz oy ~ Yoy 822 " 9y2 )

The vertical velocity can immediately be derived by integrating the continuity
equation (1.14) along z and using the fact that the vertical velocity vanishes at the
rigid bottom, which yields:

ou Ov
w(z,y,2,t)=—2 <3_:L' + 3_y> . (1.23)
By using the value of w at the surface level h, and knowing that
Dz oh oh oh

it is possibleto write the shallow-water equation for the conservation of mass:

Oh  d(hu)  0(hv)
ot oz oy

Equations (1.22), together with the equation (1.25), constitute the shallow-water
approximation. The flow motion occurs by columns of fluid, whose depth is gov-
erned by equation (1.25).

In the same way as it has been done for the Navier-Stokes equations, it is
possibleto derive ashallow-water equation for therelative vorticity by takingthey-
derivativeof thefirst of (1.22) and subtracting it from the x-derivative of the second
of (1.22); thisyields the equation for the z-component of therelative vorticity:,

= 0. (1.25)

ov  Ou
w.=C=g — 5 (1.26)
D¢ du Ov (e3¢ 0%¢
E+<a_m+a_y>(c+f)_”(ﬁ+a_w)' (.27

The viscous terms represented in this vorticity equation, as well as in equations
(1.22), arereferred to aslateral viscosity, whichisdifferent from the viscouseffects
associated with the bottom friction or the surface wind-stress. Equations (1.22)
and (1.27) are vaid in the interior of the fluid layer, while near the bottom an
appropriate boundary layer theory has to be applied. Some consideration on this
subject will be donein chapter 2, when dealing with experimentsin arotating tank.
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In the inviscid case, the constraints for the validity of the Ertel’s theorem are
satisfied for the scalar A = z/h, and the potential vorticity Il sw = (¢ + f) /hisa
material invariant, namely:

DHSW_2<C+f>_O
Dt Dt )

(1.28)

This equation states that the relative vorticity of afluid column varies accordingly
to the depth variations of the fluid layer, since the Coriolis parameter is constant in
this model; a stretching of the fluid columns forces relative vorticity to decrease,
whilethe contrary occurs for a contraction of the fluid columns.

1.2.2 Quasi-geostrophic approximation

Starting from the shallow-water approximation, | introduce now an additional hy-
pothesis, namely that the fluid isin fast rotation. In term of nondimensional pa-
rameters, thisis equivalent to suppose that the Rossby number isvery small:
U U

Ro = 0L~ fL < 1. (1.29)
For rapidly rotating flows, such as the ones this thesis deals with, it is possible to
nondimentionalize the shallow-water equations (1.22) and (1.25), and to expand
the velocitiesin an asymptotic series in the Rossby number (Pedlosky 1987). The
zeroth-order approximation |eads to the so-called geostrophic balance between the
Corialis force and the gradient of the fluid depth (which is related to the pressure
gradient); the quasi-geostrophic approximation is given by the expansion at the
first order.

By introducing the notation:

h(maya t) = D‘|'7I(l'ay, t)a (130)

where n isthe elevation of the free-surface above the level at rest, nondimentional-
ization of equations (1.22) and (1.25) yields (disregarding the primes):

(BB Y sty o (o
°\at " "oz vﬁy v fLU 0z  Re \ 8z%2  0Oy? )’
(1.31)
“\ot " Yoz vﬁy 4= fLU 0y = Re \ 0z2  08y2 )’
B0 00 By (B (B 0oy
D<6t+u3m+v3y T\ e Tay) ™Y (1:32)

where H is used as a scale for the free-surface elevation. In order to have forcing
inthefluid, H ischoosen in such away that the coefficient g H/fLU isO (1), i.e.,
H = Ro- (f°I?) /g.
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We define the (barotropic) Rossby deformation radius, R, as:

R= @, (1.33)

f
and the expression of H/D isgiven by:

H L?

EzRo-ﬁ:Ro-F, (1.34)
where 1/F = R?/L? isthe nondimensional, square Rossby deformation radius.
By inserting in equations (1.31) and (1.32) the expansions for the velocity compo-
nents and the free-surface elevation in series of the Rossby number:

u(z,y,t, Ro,Re)=ug+ Ro-u; + ...,
v(z,y,t, Ro,Re) =wvo+ Ro-vy +..., (1.35)
n(mayataROaRe):770‘|‘R0'771—|-...,

the O (Ro) terms in the equations of motion yield (considering that the lowest-
order velocity field (ug, vo) is nondivergent):

<%+ duo %>_ _Om 1 (PPue  Pu
at " 09e TV oy 17 "8z T Re \ 922 oy? )’

(1.36)
81}0 81}0 81}0) . % L 82’00 62’00
<3t +u03m +v03y +u1__3y+Re 3m2+8y2 ’
gm0 O %) <% %) _
F< ot + ug 92 + g ay + 92 + 3y =0. (1.37)

If the gradient of the free-surface elevation is eliminated by cross differentia-
tion of equations (1.36) with respect to x and y, and if the (1.37) is used in order
to eliminate the divergence of uy, it is possible to obtain the quasi-geostrophic
potential vorticity equation:

0 1

7 (Co — Fno) + (a0 - V) (¢o — Fpo) = Tre V2o, (1.38)
where the relative vorticity is given by the expression:
. 81}0 6u0 . 2
Co = oz By = Vo, (1.39)

since ug = —0dne/dy and vy = Ine/dx (lowest-order geostrophic balance), and
the potential vorticity is:
o = ¢o — Fno. (1.40)

The problem for quasi-geostrophic motion is then given entirely in terms of
the free-surface elevation, related to the pressure. Once 7y is determined as a so-
lution of (1.38), the horizonta velocity is determined by the geostrophic balance
equations.
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Since the mation is two-dimensional, in the sense that the horizontal compo-
nents of the velocity vector do not depend on the vertical coordinate, it is possible
to consider the free-surface elevation as a stream function o = ¥ (=, y, t), which
satisfy the continuity equation and has the property that the velocity vector is tan-
gent to it in every point of space. In term of stream function, velocity components
and relative vorticity are given by (disregarding the subscripts):

0% 0%

3y "= a0 (1.42)

U=

¢ =V, (1.42)
and the (nondimensional) quasi-geostrophic potential vorticity equation reads:

Dllga _ a 2 2 _ 1 _,
T2 = (Vi - Py) 40 [, (V- Fy)] = 2V, (149)
where J isthe Jacobian operator
da db Ba b
Intheinviscid case (v = 0), it is possible to verify that two quadratic quanti-
ties are conserved in the QG approximation, namely the total energy and the total
potential enstrophy:

E= /A cdA = % /A (V) + Fy?] da, (1.45)

7= /Asz — %/A (V2% - Fy) d4, (1.46)

where theintegral is calculated over aregion A where thefluid is contained and on
whose boundary the normal velocity vanishes; e is the total energy density (sum
of the kinetic and the available potential energy) and z is the potentia enstrophy
density. See Pedlosky 1987, p. 164, for a complete demonstration.

1.2.3 Thetwo-dimensional approximation

Both in the shallow-water model and in the quasi-geostrophic model, the motion
is two-dimensional, in the sense that the horizonta velocities do not depend on
the vertical coordinate, and occurs by columns of fluid of varying depth. The two-
dimensional mationisa consequence of the approximationsintroduced in the com-
plete 3D Navier-Stokes equations, and it isa valid description of the real motion of
the modelled fluid as long as the introduced hypotheses are valid.

It is anyhow possible to introduce an a priori two-dimensional approximation
of the Navier-Stokes equations, by assuming that the motion is completely de-
scribed by two components of the velocity, which depend only on two coordinates;
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if we consider horizontal motions, it meansthat u = (u (2, y,t), v (2, y,t)). Such
amodel may be derived from the Navier-Stokes equations in a manner indepen-
dent of the shallow-water model or the QG model, but it may also be deduced from
these models by adding further hypotheses. Consider, as an example, the quasi-
geostrophic potential vorticity equation (1.43); if we suppose that the fluid layer
has no free surface (the motion is confined between two rigid lids, for instance),
F = 0 and the QG potential vorticity equation reduces to the (nondimensional)
two-dimensional relative vorticity equation:

0¢ L o2
5 T = 5oV (1.47)
Notethat equation (1.47) can be directly derived from therel ative vorticity equation
(1.4) by using the fact that the vel ocity vector has only two components depending
on two coordinates. This makes equation (1.47) to be valid also when the QG
approximation does not apply, for instance when considering a rapidly rotating
fluid layer which isinfinitely high.

Intheinviscid case, thetotal energy and thetotal enstrophy are conserved; their
expressions are given by (1.45) and (1.46) with F = 0:

1 2
B= /A (V)2 dA, (148)

7= % /A (v2%)’ da. (1.49)

Note that in the 2D case, the total energy reduces to the tota kinetic energy and
the total enstrophy reducesto the areaintegral of the square relative vorticity (apart
from the factor 1/2). In the two-dimensional case, all integrals of the form

C, = /A <V2¢)ndA (1.50)

are conserved, the conservation of enstrophy being the case withn = 2.

The simultaneous conservation of energy and enstrophy is the key property
which distingui shestwo-dimensional turbulence from three-dimensi onal turbulence,
as pointed out in the next section.

1.3 Theinverseenergy cascade of 2D turbulence

1.3.1 Spectral representation of variablesin the 2D approximation

A useful representation for the variables of the fluid is obtained in the Fourier
space, by introducing the 2D spatial Fourier transform:

Fot) = o [ [ €% e 0)dr, (L51)
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as function of the wave vector k = (k, ) having modulus |k| = K; the Fourier
integral representation of the velocity vector, of the relative vorticity and of the
stream function are given by:

u(r,t) = ﬁ / / e~ (K, t) dr, (152)
(o0 = 1 [[ ™ T a0y dr, (159
W (r,1) = # / / =% (k. 1) dr. (1.54)

Inserting the Fourier representation of the stream function in the expressions (1.48)
and (1.49) for the total energy and the total enstrophy one obtains

1 -~ 2
E= / K2 |3 (k)| dk, (155)
1 -~ 2
7= / / K* |3 (k)| dk. (1.56)
In Fourier space, energy density and enstrophy density are linked by the equation:
ek, 1) = - (II{‘;t). (L57)

If we consider polar coordinates ( K, §) in wave vector space, we define the energy
density spectrum as

£(K,0)= K / &(K,0,1)do, (L58)

and we have:
E= / £ (K,t)dK, (159)
Z= / K’¢ (K, t)dK. (1.60)

In the Fourier representation, the instantaneous flow field is often described
by a spectral distribution of (kinetic) energy density £ over a certain range of the
wave vector modulus K. Mathematically, the integrals in (1.59) and (1.60) run
from zero to infinity, but physically, the inverse of the domain size corresponds
to the smallest wavenumber (L ~ K} ), and the smallest scale of the flow at
which dissipation takes place corresponds to the largest significant wavenumber
g ~ Kd‘l). At scales much larger than {; and much smaller than L (that is,
in the inertial range K,.;, € K <« K_,), dissipative effects are negligible: at
these scales, the nonlinear term in the 2D vorticity equation (1.47) accounts for a
redistribution of energy between different scales, which corresponds to turbulent
eddies of different sizes.
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1.3.2 Theinverseenergy cascade and thedirect enstrophy cascade

In 1941, the Russian mathematician Kolmogorov published his famous work on
3D turbulence in which he showed that the density energy spectrum of the three-
dimensional turbulenceis proportional to K —5/3 (Kolmogorov 1941a, 1941b). He
supposed that in a forced 3D turbulent flow the redistribution of kinetic energy in
the inertial range resultsin a net transport of energy from the large scales (small
K) of the flow, where energy isinjected, towards the small scales (large K), where
dissipation occurs. This transfer is well known as the energy cascade of 3D tur-
bulence, and has obtained later numerical and experimental verifications (see, e.g.,
Frisch 1995).

The physical picture of (forced) two-dimensional turbulence is completely dif-
ferent, and this difference with respect to 3D motions comes from the fact that in
2D turbulence, both energy and enstrophy have to be conserved (Kraichnan 1967).
Kraichnan argued that, due to this constraint, al interactions in 2D turbulence,
viewed in Fourier space, necessarily involve three values of the wave vector mod-
ulus: when a transfer of energy occurs from a middle K to either an higher or a
lower K, atransfer of enstrophy in the opposite direction must follow, in order to
conserve both energy and enstrophy.

By using dimensional arguments, as Kolmogorov had done previoudly for the
3D case, Kraichnan showed that in 2D turbulence the energy spectrum should sat-
isfy the power law

E(K)~ PK5/3, (1.61)

for K < Ky, where K istheforcing scale and e is the energy flux, and the law
E(K) ~n**K3, (1.62)

for K > K, wheren isthe enstrophy flux. He proved, moreover, that the validity
of (1.61) impliesazero flux of enstrophy between different wavenumbers, together
with a constant energy flux, and that the validity of (1.62) yieldsa zero energy flux
and a constant enstrophy flux. For K,,;, < K < Ky, where the energy spec-
trum is proportional to K ~5/3, an inverse cascade of energy occurs (constant ¢)
from higher to lower wavenumbers (largest scal es permitted by the boundary con-
ditions), whereas for K; < K < Ky, where the energy spectrum is proportional
to K3, adirect cascade of enstrophy occurs (constant ;) from lower to higher
wavenumbers, where enstrophy isdissipated (at smallest scale); seefigure 1.2 for a
sketch of the energy spectrum. Both Batchelor (1969) and Kraichnan (1971) later
proposed a logarithmic correction to the K —2 spectrum of the direct enstrophy
cascade.

Kraichnan's argument can be easily verified in this way: consider an initial
energy spectrum peaked about a certain wavenumber K ; the nonlinear interactions
will transfer the energy to different wavenumbers, for instanceto K; and K, with
K < Ky < K,. Conservation of spectral energy and enstrophy requires that

Eo=E1+&, K2 =K +K2&, (1.63)
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Figure 1.2: Sketch of the energy spectrum in (forced) 2D turbulence. Energy is introduced at
wavenumber K ;. An inverse energy cascade occurs, which transfers energy to wavenumbers K <

K, leading to a K —%/% spectrum, whereas a direct enstrophy cascadetowards K > K ; leadsto a
K 3 energy spectrum.

from which it follows that the ratios between the energies and enstrophies at the
wavenumbers K; and K, are given by:

& Ke— Ko Ki+ Ko

& _ . , 164
& Ko—K;i Ki+Kp (169

K26 K? K- K2
K& K K- K?

If we suppose, as an example, that K; = Ko/2 and K; = 2Ky, the (1.64) and
(1.65) give theratios &1 /€, = 4 and (K?&;)/(K3E,) = 1/4, which means that
energy moves preferentially towards small wavenumbers, while enstrophy moves
towards large wavenumbers. This simple example shows also the meaning of the
expressions. "inverse cascade of energy” and " direct cascade of enstrophy”.

Strictly speaking, Kraichnan's theory applies only to the case of homogeneous
and steadily forced 2D flow, but adirect enstrophy cascade has also been observed
in numerical simulations of decaying 2D turbulence, for instance by McWilliams
(1984), Brachet et a. (1986 and 1988), Santangelo et al. (1989), starting from an
initial random state .

(1.65)

1.3.3 Numerical and experimental evidence

The inverse energy cascade and the direct enstrophy cascade have been object of
intense research aimed at observing them both in numerical simulations and in
laboratory experiments. The problem isthat, in order to obtain a reliable spectrum
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for thewholeinertia range, afairly high resolution of numerical and experimental
dataisrequired.

Frisch & Sulem (1984) presented the first clear evidence of an inverse energy
cascade with a K —5/3-spectrum in anumerical simulation of forced 2D turbulence.
From the laboratory viewpoint, experiments carried out by Paret & Tabeling (1997
and 1998) and by Paret (1999) in a quasi two-dimensional, magnetically forced
electrolyte, showed the existence of an inverse energy cascade and a direct enstropy
cascade in the measured energy spectra. The numerical simulations of decaying
2D turbulence indeed showed a K —2-spectrum during the initial stages of the flow
evolution (Brachet et al., 1986 and 1988), but agradual steepening of the spectrum
was found at longer times (McWilliams 1984). These late-time energy spectra,
moreover, appeared to depend strongly on the type of initial condition (Santangelo
et al., 1989).

Numerical simulations have shown, moreover, that Kraichnan's theory might
have overlooked one important aspect of the 2D flow evol ution:associated with the
fact that the energy is transfered from the smallest to the largest eddies, the disor-
dered flow gradually organizesinto large and coherent structures, the so-called co-
herent vortices. Thesevortices are usually long-lived, and carry most of the energy
of the flow. Because of the presence of such structures, Kraichnan's assumptions
of homogeneity and self-similarity are invalidated, and the observed spectra are
usually much steeper than expected. Barotropic coherent vortices are the subject
of the next section.

1.4 Barotropic coherent vortices

McWilliams (1984) was the first who realized that freely decaying 2D turbulence
self-organizes from an initially disordered vorticity field, leading to the emergence
of coherent vorticeswhich are stable and long-lived. The presence of coherent vor-
tices has a great impact on the dynamics of the turbulent flow. He suggested that
coherent vortices completely dominate the late-time evol ution of decaying 2D tur-
bulence and may also arrest the turbulent processes such as the spectral transfer and
the selective decay. Starting from theseideas, numerical simulationsand |aboratory
experiments have been carried out in the last two decades, aimed at investigating
the emergence, the development and the interactions of coherent vortices, not only
in (barotropic) freely-decaying 2D turbulence, but also in forced 2D turbulence, in
guasi-geostrophic turbulent flows, and in baroclinic conditions (stratified fluids).

141 The emergence and development of barotropic vortices in 2D
turbulence

By using numerical simulations, it ispossibleto show that aninitially random, two-
dimensional, freely decaying vorticity field having a narrow-band kinetic energy
spectrum, peaked about a wavenumber K, far from the dissipative wavenumbers,
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self-organizesinto different topological areas, locally breaking down the hypothe-
sisof homogeneousturbulence. Vorticity centers emerge from the random field and
start to coalesce, leading to the formation of coherent vortices, where the adjective
“coherent” identifies a flow structure which is long-lived and has a well-definite
shape (seefigure 1.3).

Vorticesthat emerge in 2D turbulent fields tend to concentrate energy and vor-
ticity inside their cores and to assume an axisymmetric shape. These coherent
islands of high energy and vorticity move around in a turbulent background of
small-scale structures, which on the contrary have generally low energy and vor-
ticity, no coherent shape and short life-time, comparable with the eddy turnover
time (which can be defined as the inverse square root of the enstrophy).

Coherent vortices may be monopoles, i.e., isolated cores of either positive (cy-
clones) or negative vorticity (anticyclones). |nteractions between monopoles lead
to the formation of more complex structures or to the merging of two vortices,
depending on their relative signs. When two oppositely signed monopoles come
close together, they usually form a dipole, which contains a net linear momentum
and may therefore move rapidly through the fluid with a self-sustained propulsion
mechanism. On the other hand, the close interaction of two like-signed vortices
may lead to their merging and the subsequent formation of one new monopolar
vortex, generally larger than the original ones. Merging process occurs when the
two vortex centres approach within a sufficiently small distance (Melander et al.
1988); they start to perform a circling motion around each other in which they are
deformed and eventually the weaker vortex is absorbed by the stronger one.

Dueto all these processes, the number of vorticesin a decaying turbulent flow
decreases gradually, and their average sizeincreases. |n addition, coherent vortices
may also be strained by the shear flow produced by all the other vortices, which
leads to the formation of thin elongated filaments with strong vorticity gradients,
that become part of the turbulent background. This process represent the physical
manifestation of the enstrophy cascade towards smallest scales, where it isfinally
dissipated by viscosity. The formation of vortices, on the contrary, has been asso-
ciated with the presence of an inverse cascade of energy from small to large scales,
but this mechanism aloneis not sufficient to explain the emergence of vorticesfrom
random initial conditions. Actually, the question’why do coherent vortices form’
has not yet a complete answer, and the issue is still open.

Numerical simulations are generally performed for a flow with a very high
Reynolds number, by using hyperviscosity! as adissipativeterm, more than a New-
tonian viscous term like in equation (1.47). The modelled flow has a small but fi-
niteviscosity. However, the energy cascades towardslarge scaleswhere dissipation
does not occur, and this allowsthe energy to be practically conserved. By contrast,

In order to confine the effects of damping to the smallest scales and to reach higher effective
Reynolds numbers, the ordinary Newtonian dissipation term in the 2D vorticity equation is often
replaced by an artificial term of the form (—1)P*'4, V?¢; the case p = 2 correspondsto bihar-
monic viscosity. The physical interpretation of such numerical dissipation mechanismis still under
discussion. Seealso section 4.
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Figure 1.3: Vorticity fields obtained in a numerical simulation of two-dimensional, freely decay-
ing turbulence. In panel (a), the initia conditions for the vorticity are shown, obtained by using a
Gaussian random realization for the phasesof each Fourier component of the field and a fixed energy
spectrum peaked at a certain wavenumber (McWilliams 1990). Panel (b) shows the vorticity field at
(nondimensiona) time ¢t = 33, where fully-devel oped coherent vortices are clearly distinct from the
turbulent background. Cyclones are red, while anticyclones are blue. The simulation is performed

in a doubly periodic sgquare domain with size 2, by using aresolution 512 x 512 and a time step
dt = 1073,
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enstrophy decays substantially due to an efficient dissipation at small scale, where
it istransfered by the direct cascade. Astime goes on, concentrates into coherent
vortices and also the enstrophy decay becomes slower.

When the turbulent flow is characterized by fully-devel oped coherent vortices
embedded in a turbulent background, the vortex population appears to be self-
similar (Weiss 1993, Bracco et al. 2000). Long-time numerical simulations have
shownthat, if the Reynolds number is sufficiently high, interactionsamong vortices
continue (althoughwith smaller probability) until only one large coherent structure,
or adipole (if theinitia circulation is zero) remains, with a size comparable to the
dimension of the domain. This quasi-stationary final state is characterized by a
linear relationship between the vorticity and the stream function (Matthaeus et al.
1991).

Emergence and development of coherent vorticesin (quasi) 2D turbulent flows
have been actively studied also in laboratory experiments. Tabeling et al. (1991)
have used athin layer of an electrolyte confined in asmall container and forced by
an electrical current which isdriven by an arrangement of magnetswith alternating
poles, placed bel ow the bottom of the container. After theforcing is stopped, merg-
ing of like-signvorticesresultsin afast self-organization of the flow. Althoughthe
effects of bottom friction induce strong dissipation, this experimental set-up has
been extensively used to verify several aspects of purely 2D freely-decaying turbu-
lence with high Reynoldsnumber. Reasonably good agreement wasfound between
the evolution of statistical vortex properties, such as vortex numerical density and
average vortex radius (Cardoso et al. 1994, Hansen et a. 1998) and the scaling
theory developed by Carnevale et al. for 2D flows in free decay (1991 and 1992).
Another class of experiments was initiated by Couder (1984), who observed the
formation of quasi 2D coherent vorticesin athin liquid soap film, initially forced
by means of a grid or vertical needles. The dynamics of isolated vortices and
vortex interactions have been object of experimental interest in rotating flows. A
review on quasi 2D vorticesin rotating fluids can be found in a paper by Hopfin-
ger and van Heijst (1993). Alternatively, self-organization in rotating fluids was
observed in spin-up experiments (van Heijst 1989, van Helijst et al. 1990, van de
Konijnenberg 1995), where afluid, initially in solid body rotation, isaccelerated by
increasing suddenly the angular velocity of the container; many small-scale struc-
tures are created due to the separation of viscous boundary layers, and organize
themselves into an array of counter-rotating vortices before the fluid has reached
again a state of solid body rotation.

Althoughthisthesisdeal s only with freely-decaying turbulent flows, barotropic
vortices in forced 2D flows have been discussed numericaly by Babiano et al.
(198743, 1987b, 1990, 1994, 1995), Legras et a. (1988), Ohkitani (1991), Mal-
trud & Vallis (1991, 1993), Provenzale et al. (1995, 1999), and experimentally by
Paret & Tabeling (1997, 1998), Paret et al. (1999), Rutgers (1998), Elhmaidi et al.
(1993).

28



1.4.2 Scaling laws

In 1990, McWilliams presented a quantitative analysis of vortex dynamicsin 2D
flows, introducing a vortex census based on vortex properties such as amplitude,
size, radial profile and deformation from the axisymmetric shape, for alarge num-
ber of vorticesin along-time numerical simulation of 2D turbulence. He showed
that, for a broad class of initial conditions, the numerical density of vortices (i.e.,
the number of vortices per unit area) decreases according to o (t) ~ t~¢, with
¢ ~ 0.75, and that the average extreme of vorticity inside the vortex cores, (¢)
is conserved during the self-organization.

Carnevale et al. (1991, 1992) have proposed a new scaling theory for the sta-
tistical vortex properties of decaying two-dimensional turbulence. If one assumes
that in ainviscid, dilute“gas’ of vortices, the vortex density o(t) depends on both

ext’

the constant energy density e and the constant average peak vorticity (¢),, which
are related by the expression
e~ o)), alt), (1.66)

wherea (t) istheaverage vortex radius, acharacteristiclength scalel = /e/ (¢). ...
and a characteristic time scale 7 = 1/ (¢),,, are determined. Assuming that the
evolution of the vortex properties can be expressed as algebraic power laws, di-
mensional reasoning shows that the exponents of these power laws are al related
to onesingle, “universal” parameter ¢:

o (t) ~ 172 (t/7) ¢,
a(t)~1(t/r)¢*,

(Z () ~ 772 (t/7) %2,
(r (t)) ~ L(t/7)".

The value of the parameter £ is not determined by the theory itself, but has been
computed in several numerical studies(Weiss& McWilliams 1993, Dritschel 1993),
as well asin experimental studies (Cardoso et a. 1994, Hansen et al 1998). Ver-
ification of the scaling laws at very high Reynold number has been discussed by
Bracco et al. (2000). The application of the inviscid theory by Carnevale et al. to
bounded flowsisstill under discussion.

(1.67)

1.4.3 Topology of two-dimensional turbulence

As evident in figure 1.2, a two-dimensional vorticity field at late times may be
partitioned in two very different spatial regimes: a turbulent background with low
energy and vorticity, more or less unstructured, and the coherent vortices, which
have high energy and vorticity and strongly coherent shape.

A simple quantitativecriterion to distinguish these two areas has been proposed
by Okubo (1970), Weiss (1981) and used by Elhmaidi et al. (1993), Provenzale et
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al. (1995) and many others. It is based on the difference between the squares of
strain and vorticity:

Q= (s,% n 53) ey (1.68)

where the normal and shear componentsof thestrain are defined as S,, = du/dz —
dv/0y and S, = dv/dz + du/dy. Thiscriterion creates an elementary partition
of the vorticity field in two distinct domains, caled elliptic (where Q < 0 and the
rotation dominates over the deformation) and hyperbolic (where @ > 0 and the
strain dominates). In a“frozen” field, elliptic regions are characterized by an ap-
proximate constancy of the distance between nearby particles, whereas hyperbolic
regionsare characterized by local exponential divergence of nearby particles. Note,
however, that this criterion does not bear any direct information on the chaotic or
regular behaviour of particle trgjectories in the evolving turbulent field.

Using this criterion, vortices are distinguished from the turbulent background
according to the following partition:

1. the vortex cores are strongly elliptic domains where Q < 0 and rotation
dominates over deformation,;

2. thecirculation cells at the periphery of coherent structures are strongly hy-
perbolic domainswhere @ >> 0 and strain dominatesover rotation. They are
also regions of high kinetic energy;

3. theturbulent background isthe region where Q ~ 0 and both kinetic energy
and vorticity are low; it may be further divided into hyperbolic background
patcheswhere Q > 0 and elliptic patcheswhere Q < 0.

The edge of coherent structures may be identified by the value @ = 0, in
combination with a high value of kinetic energy (Elhmaidi et al. 1993, Paparella et
al. 1997). Infigure 1.4, the Q-value field which corresponds to the vorticity field
in figure 1.3b is shown, and the three topol ogical components are clearly distinct.

Okubo-Weiss' criterion has been discussed by various authors; in particular,
Basdevant & Philipovitch (1994) have shownthat isstrictly justified only inasmall
portion of the turbulent field, and Hua & Klein (1998) have proposed an extension
of thisapproach that explicitly takesinto account time evolution. Recently, Boffetta
et a. (2001) have reviewed some different techniques for describing the topology
of aturbulent field, and have proposed a new Lagrangian diagnostics, based on the
Finite Size Lyapunov Exponent.

Despiteall the criticisms, Okubo-Weiss' criterion has been extensively used in
the study of absolute dispersion of passively advected fluid particles in 2D turbu-
lence, and it has proven to be of value in the identification of the trapping prop-
erties of barotropic coherent vortices and in the observation of different transport
regimes associated with different regions of the turbulent flow (Elhmaidi et al.
1993, Provenzale 1999).

Because of its simplicity, in thisthesis| shall extensively use this topological
diagnostic, when there will be the need of distinguishing the coherent vorticesfrom
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Figure 1.4: The field of the Okubo-Weiss parameter, Q, corresponding to the vorticity field at
(nondimensional) time ¢ = 33 shown in figure 1.3b. Vortex cores (Q < 0) are bright and quasi-
circular, circulation cells (Q > 0) are the dark rings that surround vortex cores.

the turbulent background and, from the Lagrangian point of view, of knowing the
position of the particleswith respect to the vortex cores.

1.4.4 Vorticesin the quasi-geostrophic and shallow-water
approximations

When free surface effects (QG model, with small Rossby number) or slow rota-
tion effects (SW model) are present, coherent vortices show a different dynam-
ics with respect to the simple case of two-dimensional turbulence. Numerical
vortex dynamics in the barotropic quasi-geostrophic approximation, with a finite
Rosshy deformation radius, has been discussed by Polvani et al. (1989), Larichev
& McWilliams (1991), Waugh (1992), Kukharkin et al. (1995). Vortex dynamics
in the shallow-water model has been addressed by Ripa (1987), Farge & Sadourny
(1990), Polvani et a. (1994), Arai & Yamagata (1994), Stegner & Dritschel (2000).

Inthe QG model, the presence of afree surface dowsdown theinverse cascade
at scales larger than the Rossby deformation radius, R. Vortices form and grow
by merging as in 2D turbulence, until they reach a scale of order R; after this
stage, the finite Rossby deformation radius introduces a shield effect and strongly
diminishes the interactions among vortices at distanceslarger than d g ~ 27 /+/F,
wherel/F = R/ L isthe nondimensional Rossby deformatium radius. Thisinturn
leads to avery slow evolution because the vortices interact only weakly with each
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other, which slows down the energy transfer to larger scales. The typical length
scale of a QG flow with free surface is therefore the Rossby deformation radius.

In decaying shallow-water turbulence with Rossby number of order one, it has
been shown that the departure from quasi-geostrophy leadsto a significant cyclone-
anticyclone asymmetry for which anticyclonic vortices are generally more stable.
However, in turbulence many mechanisms may be responsible for this dynamical
asymmetry: merging processes, stability mechanisms, wave-vortex interactions,
three-dimensional effects. The role played by ageostrophic effects in vortex dy-
namicsis still not well understood.

1.5 Geophysical applications of barotropic turbulence

Barotropic turbulence is often used to describe the large-scale dynamics of the
ocean and the atmosphere by means of a simple model. The reason is that the
barotropic approximation can be widely applied, as a first approximation, when
considering the dynamics of the ocean under the pycnocline?, where the den-
sity becomes fairly constant with depth, and the dynamics of the stratosphere 3,
where density decreases slowly with height. Necessarily, the motions described by
barotropic models can only be expected to apply to geophysical phenomenawhich
do not depend in a crucial way on stratification.

15.1 Governingequationsfor large-scale geophysical flows

The fact that both the ocean and the atmosphere have very large horizontal extent
and thin vertical thickness*, makes it possible to describe their large-scale dynam-
ics, inafirst approximation, and only for conditionsof stable starification, by using
a shallow-water model, or a quasi-geostrophic model at latitudes where the local
component of the Earth’srotationisimportant.

The Earth is anon-flat rotating system, thus the compl ete Navier-Stokes equa-
tions must contain the effects due to the curvature of the Earth’s surface. In order
to describe the flow in the Earth’s atmosphere and oceans, the planet is modelled
as a sphere of radius R, disregarding the small eccentricity. Spherical coordinates
(r, 8, ¢) are used, where r is the sum of the Earth’s radius and the vertical height
above the sea level (or the negative depth below the sea level), € is the longitude
and ¢ isthe latitude (see figure 1.5a). The complete set of equations of motion on
a rotating sphere can be derived by using the hypothesis that the mean thickness

2Thepycnocline isthe layer of the ocean, under the surfacelayer, wherea sharp changein density
with depth occurs. It lyes between 0.1-1 km depth at low latitudes, less at mid-latitudes.

3The stratosphere is the layer of the atmospherelying between 10-50 km altitude.

“The depth of the ocean rarely exceeds six kilometers, and the vertical extent of major current
system is usually much less than that. On the contrary, the horizontal scales is hundreds or even
thousandsof kilometers. Similarly, large-scale atmospheric phenomenahave a characteristic vertical
scaleof ten kilometers, whilethe horizontal scaleis about one thousand of kilometers (sinoptic scale)
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of the atmosphere and the oceans is much smaller than the Earth’sradius (see e.g.
Holton 1979).

(b)

Figure 1.5: Schematic views of the spherical coordinate system used for the Earth (a) and of the
local reference frame on a plane tangent to the Earth’s surface (b).

Inthe sameway, it ispossibleto obtain the equations on a rotating spherein the
shallow-water approximation (see e.g. Muller 1995), in which geometrical terms
associated with the curved surface of the planet are still present.

However, if the horizontal scales of motion are much smaller than the Earth’'s
radius, the curvature of the Earth’s surface can be neglected and alocal coordinate
system on a plane tangent to the surface of the planet can be used, as depicted
in figure 1.5b. In this new reference frame, z is the local vertical height, x and
y are the horizontal coordinates tangent to the surface and the rotation vector has
components = (0, Q2 cos (¢), Nsin(¢)). From thisit follows that the Coriolis
acceleration is given by:

2@ xu = 2Q(—vsin(¢),usin(¢), —ucos(¢)) (1.69)
= (_fva fua —2Qu cos (¢)) ’ (170)

where now the Coriolis parameter is f = 2Qsin (¢) that, in general, depends on
latitude.
Asasimplification, f is often assumed to be a constant,i.e.

f = fo=20sin(¢0), (1.71)

where ¢, isthe central reference latitude of the domain considered. Thisapproxi-
mation is usualy referred to as the f-plane approximation. In this approximation,
provided that the vertical component of the Coriolis acceleration is negligiblewith
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respect to the pressure gradients (as it is indeed), the flow dynamics can be de-
scribed by the shallow-water equations (1.22) and (1.25) where the Coriolis pa-
rameter isreplaced by the expression (1.71). Furthermore, if the Rossby humber is
small enough, a quasi-geostrophic approximation on the f-plane can be used, and
the dynamics can be described by using equation (1.43).

Animproved representation of the latitudinal variation of the Coriolisparame-
ter can be obtained by expanding it in aTaylor series around the reference latitude
¢o; a first order, the approximation is usually referred to as the 8-plane approx-
imation. In this case, the equations of motion have an additional term, propor-
tional tothevalue 8 = 22 cos (¢o) / R, which changes the dynamics of turbulence.
Throughout this thesis, 3-effects are disregarded, and only the f-plane approxima-
tionistaken into account when referring to geophysical applications of barotropic
turbulence.

Some final remarks have to be made about the role of viscosity in geophysical
flows. In the shallow-water and the quasi-geostrophic models described in the pre-
vious sections, viscous effects are due to the molecular viscosity. For geophysical
flows, the Ekman number is extremely small, if evaluated by using the molecular
viscosity coefficient, thus molecular viscous effects can be neglected. Neverthe-
less, the interaction between the large-scale motions, nearly inviscid, and the small-
scale turbulent motions, may leads to exchange of momentum and energy, which
eventually affects the large-scale flow. The viscous interaction between different
scales of motion can be parameterized by introducing a turbulent eddy viscosity
both in the horizontal and in the vertical direction, whose coefficients are usualy
denoted as Ay and Ay, respectively. Equations (1.22), and (1.43) are still valid,
by replacing v by A and Ay°

1.5.2 Vorticesin geophysical flows

Long-lived, large-scale vortices are common features in the Earth’s atmosphere
and oceans, as well as in the atmospheres of the outer planets. Such vortices are
known to greatly influence the transport properties of the global circulation, whose
study isa key issue of geophysical fluid dynamics.

Starting from the outer planets, Jupiter's Great Red Spot is a long-lived co-
herent vortex in the upper atmosphere of this planet, which exist since more than
300 years (Smith et al.1979, Ingersoll 1990, Dowling 1995). Anocther example is
Neptune's Great Dark Spot.

Quasi two-dimensional coherent vortices play an important role in the Earth’'s
atmosphere: examples include the antartic polar vortex (see e.g. Mclntyre 1989,
1995), and tropical cyclones (Rossby 1949, Adem 1956, Chan & Williams 1987).

In the oceans, quasi-2D vortices have been detected in the Gulf Stream, in the
form of ringsthat detach from the current (Ring Group 1981, McWilliams 1985).

5These coefficients are difficult to estimate in the oceans and in the atmosphere. Typical values
for the ocean are Ay ~ 10° + 10® cm?s™! and Ay =~ 1 = 10* cm?s™'; for the atmosphere,
Ap ~ 10° em?s™! and Ay =~ 10° cm?s™! (see Pedlosky 1987).
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Other examples include the salty Mediterranean eddies (the so-called meddies) in
the Atlantic Ocean, which detach off-shore of Portugal’s coast (Flierl 1987, Armi
et al. 1989, Richardson et al. 1989, 1991), or the large-scale vortices that detach
from the Agulhas current near South-Africa(Goni et al. 1997). Such vortices have
adiameter of afew hundredskilometers and may persist for months or even years.
Due to their relatively long life-times, some of these vortices may travel for long
distances, transporting salt and heat from one region of the ocean to another. This
mechanism, inturn, may affect the world-wide ocean circulation, with possiblecli-
matic effects. Thus, ortex dynamicsand transport by coherent vorticesare then key
issuesin geophysical fluid dynamics; the goal of thisthesisisto add afurther piece
to the puzzle by means of laboratory and numerical simulationsin the framework
of barotropic turbulence.
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Chapter 2

L aboratory experimentson
vortex dynamics

This chapter deals with laboratory experiments on the dynamics of long-lived co-
herent vorticesin rapidly rotating, barotropic flows in free decay. The experiments
have been carried out in alarge rotating tank (diameter of 14 meters) by using dif-
ferent flow visualizationtechniques: Particle Image Velocimetry and Laser Induced
Fluorescence. First, the experimental set-up is discussed, with a brief description
of the flow visualization techniques that have been used. The evolution of the
turbulent field, starting from quasi-random initial conditions, and the interactions
among the coherent vortices are then described. Time sequences of Eulerian char-
acteristics of the flow and of the vortices are discussed, for different values of the
Rosshby number, the Reynolds number and the Rossby deformation radius.
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2.1 Laboratory modelling of rotating flows

In order to model a geophysical flow for which rotation is important (large-scale
flows), laboratory experiments have to be performed in arotating reference frame.
One of the most common techniques consists in carrying out experiments by us-
ing water in rotating tanks, which allow to simulate the effects of the Coriolis
force. The diameter of these experimental facilities isimportant in order to reach
small values of the Rossby number without rotating too fast, since fast rotation
implies nonnegligible free-surface effects (surface paraboloid) that alter the dy-
namics of the problem. Large-scale rotating tanks also allow to obtain large-scale
flows, which may be important for the study of those phenomenathat are not scale-
invariant or when one would like to disregard boundary effects.

The size of rotating tanks that are available in fluid dynamical laboratories
throughout the world may vary between a diameter of one meter up to a diameter
of about ten meters; at the moment, the largest rotating tank in the world is the
"Coriolis’ tank of the " Laboratoire des Ecoulements Géophysiques et Industriels”
(LEGI) in Grenoble (France), which has a diameter of 13 meters. This chapter is
devoted to the description and discussion of the experiments on vortex dynamics
that we have carried out in thislarge-scale tank.

2.1.1 Fluid dynamics of barotropic flowsin rotating tanks

A shallow layer of an homogeneous fluid in arotating tank can be mathematically
modelled, to a first approximation, by means of the shallow-water model or the
guasi-geostrophic mode (if the Rossby number is small enough), as discussed in
chapter 1. These models describe the fluid dynamicsin the interior of the flow, but
do not consider the predominant viscous effects at the bottom and at the surface,
where appropriate e boundary layer models have to be used.

Fast rotating homogeneousflows are dominated by quasi two-dimensional colum-
nar motions, as the Taylor-Proudman’s theorem argues. This theorem is strictly
validfor inviscid flows, thusit failsin athin layer near the tank bottom and near the
water surface, where boundary conditions make viscous effects to be nonnegligible
(in theinterior of the fluid, molecular viscosity does not take the flow much away
from the columnar motion). No-dlip conditions at the bottom and the wind-stress
at the surface essentially break down the two-dimensional character of the motion
and introduce three-dimensional effects that, although limited in a thin boundary
layer, can influence also the interior flow on along time scale.

Wind-stress effects are due to the rotation of the tank inside the laboratory
air, that is at rest; they are negligible if the rotation is not fast, and limited to a
very thin layer. Usually, experiments on barotropic flows do not deal with surface
phenomena, thuswind-stressis not taken into account. It isalso possibleto reduce
it by covering water with a buoyant curtain, except for the measurement area.

The boundary layer next to the solid bottom is produced by the fact that the
velocity vector must vanish at z = 0; insideathin Ekman layer, a balance between
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pressure gradients, Coriolisand viscous effects is established, while temporal and
nonlinear terms are negligibly small. The thickness of the bottom Ekman layer is
given by (see e.g. Pedlosky, 1987, p.177):

Sg = <27”>1/2, 2.1)

where | have now defined the (vertical) Ekman number as two times the definition
givenin (1.8):

2y
= D2
with f = 2Q and D the vertical length scale, as in the shallow-water model dis-
cussed in section 1.2.

In laboratory experiments, the Ekman number is usually very small (Ek ~
O(107%), implying that the Ekman layer thickness is also very small compared
with the total fluid depth, since 5 = DV Ek. Anyway, thisthin layer influences
the interior flow on a characteristic Ekman time scale, whose expression is given

by:

Ek (2.2)

2 D
Tg = = .
P WVER T Vol
This is due to the fact that, when the interior flow is not spatially uniform,
the flow within the Ekman layer induces a non-zero vertical velocity on top of the
Ekman layer, which is proportional to the relative vorticity in the interior (Ekman
pumping, see e.g. Pedlosky 1987, section 4.5):

(2.3)

%aEg. (2.4)

w|z=5E =

Thisin turn implies that fluid is exchanged between the Ekman layer and the in-
terior, giving rise to what is called Ekman blowing/suction of fluid, namely the
entrainment or detrainment of fluid from the Ekman layer to the interior or the
contrary, according to the sign of relative vorticity. When the vorticity is posi-
tive, there is pumping of fluid from the boundary layer, thus squeezing the fluid
columns; on the other hand, when the interior flow has negative relative vorticity,
there is suction of fluid towards the boundary layer, thus stretching the flow. In
both cases, the interior relative vorticity decays exponentially, with a characteristic
time scale given by (2.3).

Toverify this, it issufficient tointegrate the continuity equation for the shall ow-
water model by using (2.4) as bottom boundary condition. One can then obtain that
the horizontal divergence isrelated to the entrainment or detrainment of fluid:

ou Jdv 1
e 25)

By inserting equation (2.5) in the vorticity equation (1.28), and neglecting all non-
linear terms and lateral friction (in order to isolate the bottom friction effects), the
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vorticity equation reduces to:

o 1
o = —3/CVEE, 26)
whichimplies:
¢ = Goe T, (2.7)

with the Ekman time scale given by (2.3).

From (2.6) one sees that the effects of the bottom friction can be taken into ac-
count by adding a linear term to the vorticity equation in the shallow-water model
or in the quasi-geostrophic approximation. However, weak nonlinear Ekman fric-
tion terms may induce differences with respect to the linear approximation which
iscommonly used.

2.2 Experimental set-up for the study of vortex dynamics

The experiments discussed here are devised to explore the dynamics of an in-
compressible, homogeneous and rapidly-rotating shallow fluid, by using the large
“Coriolis’ facility. The fluid layer has a free surface and a flat bottom. Only an
initial forcing isintroduced, then the initial energy decays by dissipation.

2.2.1 The”Corialis’ rotating hydraulic tank of LEGI.

Thelargerotating” Coriolis’ platform (diameter of 14 meters) of LEGI in Grenoble
supportsacircular tank with adiameter of 13 meters and a depth of 1.2 meters (see
apicture of thefacility in figure 2.1).

The tank rotation period can be adjusted continuously from about 20 to 1000
seconds and the rotation is counterclockwise. The tank can be filled, up to about
180 tons, either with homogeneous fluid (fresh or salt water) or with stratified
fluid, by using different concentrations of salt. The maximum total weight of the
facility is of the order of 300 tons. The platform is supported in its center by a
spherical thrust bearing, and initsperiphery by 23 rollersequally spaced around the
circumference. The platform and the circular tank rotate around a central “pivot”,
used for the electrical and digital networks, aswell asto fix a co-rotating structure
from whom flow visualization devices can be hung; a“bridge’ is also fixed to the
central pivot and it isused for people to manage the experiments. The discrepancy
from the vertical isabout 3 - 106 rad.

Water temperature and salinity of water are stabilized and controlled with high
precision, due to the thermal inertia of such a large amount of fluid. Water is
introduced from the bottom while the table is rotating. In stratified experiments
fresh water isintroduced first, followed by salt water. In order to avoid excessive
mixing, the tank is filled in approximately 4-5 hours. Additional 2-3 hours are
allowed for thefluid to spin up to approximate solid body rotation; residual motions
in the tank, due to convection and wind stress effects, are estimated to be of the
order of 0.5 cm/s.
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Figure 2.1: The” Coriolis’ rotating tank of the Laboratoire des Ecoulements Géophysique et In-
dustriels in Grenoble (France).

2.2.2 Thestudy domain

For the present experiments, we did not use the whole tank: simple boundary con-
ditions for the study domain are obtained by using a closed rectangular channel,
8.4 m long and 4 m wide, placed in a off-diameter position in the “Coriolis’ tank.
In this way we reduce the length scale of the flow, but this choice allowsto com-
pare the experiments with numerical simulations, which are usually performed in
simple square or rectangular domains. Furthermore, the presence of the centra
pivot in the tank would have constituted an obstacle in the study domain, leading
to the possible creation of wakes in the flow, if the whole circular tank had been
used. Sketch in figure 2.2a provides a top view of the tank, of the channel and of
the study domain, while picture 2.3 shows the rectangular channel and the "rake’
used to generate theinitial forcing.

2.2.3 Generation of theinitial conditions

We generate quasi-random initial condition by moving forward and backward a
rigid frame of equally spaced, vertical flat teeth, that we call the "rake.” Each tooth
hasaheight of 1 m. The reason for the double passageisto createinitial conditions
as random and homogeneous as possible. Thefirst passage of therake, in fact, cre-
ates some so-called von Karman'’s streets of small-scale wake vortices; the second
passage destroysthe vortices already formed and creates new ones, adding random
turbulent componentsto the flow.
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(a)

w 0p8

Figure 2.2: Top view (&) and cross section (b) of the rotating tank with the experimental setup. In
the top view, the channel and the study domain are shown. The square area depicted in figureis the
cameraview field, and the two obliquelinesindicate the edgesof the laser sheet. In the cross section,
| also show asketch of the "rake”.

Theinitial input of energy occurs at alength scale which depends on the spac-
ing between the rake teeth and the individual tooth width. The horizontal spac-
ing between two neighboring teeth is chosen to be either 17.5 or 35 ¢m and the
tooth width is respectively 5 or 10 cm. Since the rake has atotal length equal to
the smaller side of the rectangular tank, a total of 18 or 9 vertical teeth are used.
Figures 2.2b and 2.3 provide images of the system. The teeth spacing and width
determine aso theinitial size of small-scale vortices.

Theinitia quasi-random turbulent field isthen generated by a computer-controlled
movement of therake along thetank, obtainingwhat we call "raketurbulence”, i.e.,
a gquasi-two-dimensional analog of "grid turbulence.” Of course, the initial turbu-
lence has a three-dimensional structure anyway, and it is only the rotation of the
system that eventually generates an almost two- dimensional motion at later times
(after some minutes).

Together with the above mentioned method for creating initial, quasi-random
turbulence, we use also a method specifically designed for generating avortex ina
specified position in the study domain. This method uses a cylinder with diameter
of 1 m, that ishanged from a small rotating hand-crane, allowing to lower it in the
water at pre-determined positionsin the channel. The cylinder is equipped with
four rotating flat blades that allow for spinning up the water inside the cylinder,
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Figure 2.3: Picture of the rectangular channel and of the “rake” used to generate theinitial quasi-
random forcing of thefluid.

with aperiod corresponding to the desired turnover time of the vortex. The cylinder
is then lifted up slowly, and a vortex is created into the turbulent flow. With this
method, it is impossible to obtain a pure cyclonic or anticyclonic vortex, due to
zero mean circulation in the flow, and for cyclonic rotation inside the cylinder a
tripoleis generally formed.

2.2.4 Parameters of the experiments

Different values for the control parameters of the flow are obtained by varying the
speed of the rake, the teeth spacing and the rotating period. Thisleads to different
values for the initial Rossby and Reynolds numbers, which are summarized in Ta
ble 2.1. Here, the Rossby number is defined as Ro = U/2Q2L and the Reynolds
number is Re = UL /v, where U is the velocity scale of the flow, L isthe horizon-
tal length scale, 2 isthe angular velocity of thetank, » isthe kinematic viscosity of
water (v = 1076 m?/s). In order to estimate the initial value of these numbers, we
use the speed of the rake as the vel ocity scale and the mean of the spacing between
two rake teeth and their width as the length scale. Later on, the dominant length
scale becomes the vortex radius (that is larger than the rake spacing and the tooth
width), the velocity becomes smaller due to dissipation, and the Rossby number
decreases, down to an order of O(107%).

The water depth in the experimentsis D = 90 cm; the Ekman number defined
in (2.2) isthen O(10~°), leading to athickness of the bottom Ekman layer of afew
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Fotation
period
Tis)

Table 2.1: Parameters of the experiments.

millimeters, and to an Ekman time scale of about one hour. The influence of the
bottom friction isthen negligiblein these experiments, which are performed for 40
minutes each (corresponding to more than 50 rotations of the tank). We have also
performed some experiments by using a water depth of 35 cm, in order to see the
effects of a smaller Rossby deformation radius (R = /g D/29Q); in this case, the
Ekman time scal e reduces to about 20 minutes, leading to arapid decay of vorticity
which slows down or even blocks the self-organi zation of turbulence. Therefore, it
is difficult to see the effects of the Rossby deformation radius, which reaches the
minimum value of 7 m in our experiments.

2.2.5 Observation and measurement techniques

In order to obtain qualitative and quantitative measurements of the Eul erian charac-
teristicsof theflow, two techniques have been adopted: Particle Image Velocimetry
(PIV) and Laser Induced Fluorescence (LIF).

Particle Image Velocimetry

Particle Image Velocimetry (also called Digital Particle Image Velocimetry to point
out the fact that it uses digital images of the flow) is used to measure the instan-
taneous velocity field in a planar section of the flow. The technique consists es-
sentially in determining the local displacements of patches of small passive tracers
over a sufficiently small time interval in such a way that the measured mean ve-
lacities of the patches provide a close estimate of the global instantaneous velocity
field. See Raffel et al. (1998) for a review on PIV technique, and Jambunathan
et a. (1997), Westeerwee! et a. (1997), Scarano & Riethmuller (1998, 19993,
1999hb) for recent improvements on the processing algorithms.
For the use of the PIV, we adopted the following experimental configuration:
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e a continuous 8W Argon laser source with a wavelength of 488 nm (green
light),

e a deflecting mirror (with an oscillation frequency of 120 Hz) in order to
expand the laser beam into a laser sheet either in the horizontal or in the
vertical plane. The sheet thicknessis between 5 and 10 mm,

e adua channel cross-correlation Kodak Megaplus camera (model ES 1.0)
with a CCD sensor having a pixel array of 1008(H)x 1018(V) and a mini-
mum pulse separation of 5 s,

e apersona computer equipped with aframe grabber and avery fast hard disk
in order to collect and store the images at the maximum available frame rate
(30 Hz).

The experimental set-up of thisvisualization apparatus is shownin figure 2.4, and
the position of the (3.05x 3.05) m2 camera view field is shownin figure 2.3a.

digital camera

horizontal
laser sheet
2

Figure 2.4: Experimental set-up for the use of PIV and LIF visualization techniques. A laser
produces a coherent beam which is expanded in a sheet by using a deflecting mirror. Ancther mirror,
set at 45 degreeswith respect to the ground, is used to expand the sheet horizontally. The horizontal
laser sheet may be positioned at different vertical levels by acting on the moving optical system.
During the experiments, we have positioned the sheet about fifteen centimeters below the water
surface, in order to avoid wind-stress effects. A CCD camera captures images of a portion of the
flow illuminated by the laser sheet, and the binary data are sent to a Personal Computer where they
are stored, and processed afterwards.

In order to take images of tracers by the CCD camera, the flow is seeded uni-
formly with a mixture of 60 x Orgasol and 150 p Optimage particles (with a nom-
inal density of about 1.02 g/cm?3). Specia attention is paid to determine the nu-
merical density of seeding particles ('seeding density’) in the channel, in order to
obtain images of the flow with an optimum number of particles per pixe (ppp).
Fincham & Spedding (1997) produce a plot of the optimum seeding density versus
particle diameter in the images for strong and weak shear. The diameter of the
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image of the particleswe useisd =2 3 pixels and shear can be strong in the circu-
lation cells around vortex cores. Based on the above estimate, we select a density
of N =2 0.1 ppp.

In the experiments described here, we use the cross-correlation technique to
obtain particle displacements from images of the seeded flow. To thisend, on pre-
selected times we record a burst of images, i.e. a series of frames containing the
particle positionsat different but closely-spaced times. Thetotal recording timefor
each experiment is40 minutes. During this period, atotal of 80 burstsare recorded,
at intervals of 30 seconds. Each burst is composed by 4 image frames taken with
different time delays, aimed at having several possible combinations of particle
displacements. Thisisdesignedto allow for choosing the best pair of frames during
the processing phase. At the beginning of the evolution, when the velocities are
high, we prefer to use frames that have asmall time separation, whileon later times
we prefer to use frames with alarger time separation. In addition, time delays are
linearly increased during each experiment, to approximately compensate for the
turbulence decay and the consequent velacity decrease.

The Correlation Image Velocimetry (CIV) agorithm by Fincham and others
is then used to obtain the Eulerian velocity on a grid by processing the raw PIV
images of the particlesin the fluid. This algorithm incorporates advanced features
that improve the performance and allow for obtaining accurate values for the ve-
lacities: the decoupling of the interrogation window from its fixed location in the
first image to any arbitrary location in the cross-correlated second image, inside
a search box; the possibility of performing a hierarchical scheme of multi-passes
with increasing spatial resolution; the on-line correlation peak averaging of Hart
(1998) for reducing the wrong vectors. See Fincham et a. (1991), Fincham &
Spedding (1997) and Fincham & Delerce (2000) for details. Derived quantities,
such as vorticity or horizontal divergence, can then be calculated from the velocity
field using local splines.

Theexperiments carried out inthe” Coriolis’ rotating tank involve alarge cam-
eraview area, larger than that usually adopted in PIV experiments; due to thischar-
acteristic, the available resolution of velocity fields is determined not only by in-
trinsic fluid dynamical limits (i.e., the minimum length scale of the flow for which
the hypothesis of a uniform motion of tracer patches is till valid, or the numeri-
cal density of seeding), but also by strong technical limits: the camera optics, the
light sensibility and the pixel resolution of CCD, the tracer size compared to the
distance of the camera from the visual plane. The difficulties of optimizing large
scale PIV experiments influence the final resolution of the data. Nevertheless, the
possibility of performing ahierarchical scheme of multi-passes, offered by the CIV
algorithm, and the use of 50% overlapping of the interrogation windows, allowsto
attain a maximum resolution of 3.6 cm, which means that the velocity fields over
the physical area of 3.05 x 3.05 m have a maximum resolution of 80 x 80 grid
points (a narrow band at the edges of the PIV imagesiis, in fact, not available for
the cross-correlation analysis, dueto the possibleentrance or exit of tracersthrough
the edgesof one of thetwo cross-correlated images). Higher resolutionare no more
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reliable.

Outlier detection and filtering in PIV

An important point is the possible residual presence of wrong vectors (also called
"outliers’) in the velocity field at the end of each correlation step, also after use of
Hart’s detection and correction in thefirst pass. These outliers have to be detected
and filtered by the use of automatic numerical procedures before each subsequent
pass and before calculating of the derivatives. | have addressed the problem of
outlier detection and filtering by developing an algorithm, additional to the main
ClIV agorithm, that improves their detection. The most used algorithms for the
detection of an outlier need to evaluate the mean (or median) of its neighbours,
together with the standard deviation, and use the latter as a threshold value for
the difference between the interrogated vector and the mean (or median) (see, e.g.,
Raffel et al. 1998 and Westeerweel 1994). However, the standard deviation itself
can be affected by errors due to the possible presence of outliers in the nearby
vectors, or it can be so small that very dlight differences with respect to the mean
or median of nearby vectors are rejected. To obviate this problem, | have tried
different solutions; one of them isto use an appropriate, local, adaptive threshold
which isnot ssimply given by the standard deviation multiplied by a constant, but it
isamore realistic function of the standard deviation itself, satisfying two requests:
first, when the standard deviation is small, the threshold should be larger; second,
when the standard deviationis large (indi cating a possible prsence of outliersin the
nearby vectors), the threshold should be smaller, apart some corrections due to the
presence of strong gradientsin the flow.
The simplest proposed expression for the threshold is:

Thr = (Aexp(—Bo) + C)o, (2.8)

where ¢ isthe standard deviation, calculated by using the eight nearby vectors of
theinterrogated one, and A, B, C are constantsto be determined in an adaptive way,
by considering the statistical and/or the fluid dynamical properties of the flow.

A simple way is, for each velocity field, to evaluate the value which corre-
spondsto the maximum of the Probability Density Function (PDF) of the standard
deviation, and to useit for determining the maximum of the threshold function; this
leadsto an expression for the constant B. The constant C may be locally determined
by evaluation of gradientsnearby an interrogated vector. Lastly, the constant A may
be fixed in such away that the threshold has a certain maximum value, e.9. 3602,
where o,,,... iSthe value of the standard deviation at the threshold maximum.

The application of this algorithm to the PIV velocity fields recorded in the
present experiments improves the detection of outliers and, above all, it improves
the percentage of valid vectors which are detected as wrong vectors by usual vali-
dation algorithms.

Another algorithm has been developed for the detection of outliers in multi-
passes PIV. It simply usesthe lowest order, low-resolution vel ocity field (validated
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for instance by using the technique described above) as a” pattern” for the higher-
resolution field; vectors which have large differences with respect to the corre-
sponding interpolated vector in the low-resolution field, are rejected.

The velocity field is then interpolated by local splines in the positions where
vectors have been filtered out, in order to get afield on aregular grid.

Laser Induced Fluorescence

Here | recall briefly the use of Laser Induced Fluorescence. LIF is a technique
that we have used only in order to visualize the instantaneous flow structures and
to tell apart the vortex cores from the turbulent background. The arrangement for
using LIF isthe same used for PIV; the difference isin the seeding, which for LIF
is Disodium fluorescein (green dye) with an absorption wavelength of 500 nm and
an emission wavel ength of 535 nm. The light recorded on the digital images is not
the scattered light, asfor PIV particles, but the fluorescent light emitted during the
transition of electronsin the dye moleculesfrom the lowest vibrational level in the
excited singlet state to the non-excited state.

See Walker (1987) and Aanen et al. (2000) for details on thistechnique, which
isefficiently used for passivetracer concentration measurements, since the fluores-
cent light emitted by the dye molecul es (thus, theimage intensity) is approximately
alinear function of the dye concentration.

2.2.6 Datacollection

During the experiments we collect two types of raw data:

e photographicimages and sequences of digital imagesof the fluid seeded with
fluorescein. The flow structures are visible without any post-processing. It
is possibleto visually follow the time evolution of the coherent vortices and
the displacement of the float-like tracers;

e sequences of digital PIV images of the fluid seeded with microscopic par-
ticles. These images need post-processing in order to extract quantitative
dataon Eulerian vel ocity, vorticity, kinetic energy, horizontal divergence and
other dynamical variables.

In order to get direct Lagrangian information, we also use afew float-like trac-
ers, whose description is postponed to Chapter 3; digital images of the positionsof
these tracers are available, and post-processing techniques (float tracking) can be
used in order to extract quantitative information on their trajectories.

The sequences of velocity fields obtained with PIV processing form a large
data set available for detailed studiesof the Eulerian properties of the vortices with
different values of the Rossby and Reynolds numbers, as well as for studies of
passive tracer transport (which isthe topic of Chapter 3).
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2.3 Theevolution of the quasi-2D turbulent field

In this section, | refer to an experiment carried out by using: tank rotation period
T = 50 s, rake speed U = 6.5 cm/s and rake spacing between two teeth? = 35 cm.
This corresponds to an initial Rossby number Ro = 1.1 and a Reynolds number
Re = 15000. Comparisons between different experiments are discussed in the
next section.

After the passages of the "rake”, the flow is almost unstructured; small scale
vortical patches, produced as wakes by the rake teeth, interact each other and un-
dergo merging phenomena, which lead to a rapid increase of size. Figure 2.5 pro-
vides a sequence of pictures of the flow obtained by using LIF; seefigures 2.6, 2.7
and 2.8 for the fields of velocity, vorticity, kinetic energy and Q-value at different
times, obtained by using PIV. During this first stage, the turbulence has a three-
dimensional structure, as we have verified by illuminating the seeded flow with
vertical laser sheets.

After some minutes (between 5 and 8, depending on the rotation period), indi-
vidual coherent vortices emerge as structures distinct from the turbulent, unstruc-
tured background, and their following evolution can be clearly tracked. The sep-
aration between vortices and background, then, occurs very early after the initial
energy input, where "early” means that the time scale at which this separation
occursis very small when compared to the time scale of evolution of the freely-
decaying turbulent flow: after more than one hour, in fact, the flow does not yet
come back to the state of rest, and evolution is still active, although the velocities
arefeeble.

During the first stage in which vortical patches and turbulent background are
not clearly distinct, an important role is played by the three-dimensional compo-
nent of turbulence: for an initial Rossby number of order one, anticyclonic® vor-
ticity filaments subject to a straining field in a quasi-2D flow are destabilized by
rotation, whereas rotation has a stabilizing effect (compared with the non-rotating
case) on cylonic vorticity filaments (Lesieur 1993, p. 81). Thisimpliesthat, after
the separation between vortices and background, cyclones are more abundant than
anticyclonic vortices, which have been destabilized before the self-organization of
the turbulent field could reinforce them. This effect has been verified in al the
experiments we have performed, with different Rossby and Reynolds number: al-
ready at early times, there are mostly cyclonesin the flow, and the few anticyclones
are generally weaker. This effect is strongly different from the results obtained
numerically by using both a quasi-geostrophic model (in which there is no asym-
metry at all between cyclones and anticyclones) and a shallow-water model (which
predicts an asymmetry, but favours anticyclonic vortices), and is due to theinitial
three-dimensionality of the flow. When the fluid is very shallow (in the case with
35 cm depth, for instance), aso the Ekman layer contributes to destabilizing an-

1| remind that ”cyclonic” and "anticyclonic” are terms referred to the rotation of the reference
frame: acyclonic motion occursin the same direction asthe reference frame rotation, whileit is the
contrary for an anticyclonic motion.
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ticyclonic vortices, as pointed out by means of experimental evidence by Chabert
D'Hieres et al. (1989). The combination of these two effects leads to a total lack
of fully-devel oped anticyclonesin experiments with very shallow water.

The second stage of evolution of the turbulent flow is, on the contrary, amost
two-dimensional, and it can be described by means of the quasi-geostrophic model
in the case of small Rossby numbers (Ro = O(1071)), with possible ageostrophic
effects when the Rossby number islarger.

Particular care is devoted to test the hypothesis of quasi two-dimensional flow
at this stage. A qualitative confirmation of the two-dimensionality of the flow is
obtai ned during the experiments, asthe horizontal laser beam used toilluminatethe
flow, positioned at different vertical levelsin the fluid, showsthe same structure on
different horizontal planes (afact that confirms the columnar structure of the flow).
More quantitatively, the estimated values of the horizontal divergence are close to
zero, as discussed further below. This happens for both the slower (period of 100
s) and the faster (period of 50 s) tank rotation speed and it becomes more clear as
the turbulence evolves.

During this stage, coherent vortices carry most of the energy and enstrophy
of the flow, and interact with each other mainly by merging processes which in-
crease their size up to a diameter of order one meter (one third of the camera
view field). This stage has a long duration, more than half an hour if the initial
Reynolds number is higher than 10000, and it is characterized by advection of
vortices throughout the turbulent flow, induced by the field created by the other
coherent structures. This advection of vorticesincreases the probability of interac-
tions, which are mainly reduced to merging or straining, since cyclone-anticyclone
coupling is not possible due to the lack of anticyclonic vortices. The turbulent
field becomes more and more inhomogeneous: vortices with increasing size are
separated by large unstructured areas of low energy.

As time goes on, dissipation reduces drastically the energy in the system; at
this point the background has negligible vel ocity, and the energy is concentrated in
large scale rotating vortices. Close interactions among coherent vortices are less
and less likely due to the reduction of their mutual advection. The only motion
which persists is the dow rotation of fluid inside vortices, still visible after more
than ninety minutes after the start of the experiment, if the Reynolds number is
sufficiently high.

2.4 Characteristicsof theturbulent field at different
Rossby and Reynolds numbers

I compare here four different experiments, characterized by the following initial
parameters:

1. Re = 29000 and Ro = 2.3, obtained by using: tank rotation period T = 50
s, rake speed U = 13 cm/s and rake spacing! = 35 cm.
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Figure 2.5: Sequenceof flow visualizations obtained by LIF. Each snapshot represents the struc-
ture of the turbulent flow ina3 x 3 m? areaplaced at afew centimeters below the surface. Thetime
interval between the snapshotsis 50 s and the first snapshot is taken 6 min after the passage of the
rake. In this experiment, the water depth is 90 cm and the rotation period is50 s (Re = 15000 and
Ro = 1.1). Thewhite dots are float-like tracers, whose shadows are visible as black straight lines.
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2. Re = 15000 and Ro = 2.3, obtained by using: tank rotationperiod ' = 100
s, rake speed U = 6.5 cm/s and rake spacing ! = 35 cm.

3. Re = 7000 and Ro = 2.3, obtained by using: tank rotation period T = 50
s, rake speed U = 6.5 cm/s and rake spacing! = 17.5 cm.

4. Re = 15000 and Ro = 1.1, obtained by using: tank rotation period T = 50
s, rake speed U = 6.5 cm/s and rake spacing ! = 35 cm.

2.4.1 Energy, enstrophy and horizontal divergence

Figures2.9, 2.10 and 2.11 show, respectively, the time evolution of the total kinetic
energy, thetotal enstrophy and the mean square divergence inlogarithmic scale for
the four cases mentioned above.
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Figure 2.9: Time evolution of the total kinetic energy for four different experiments. Re = 29000
and Ro = 2.3 (solid line), Re = 15000 and Ro = 2.3 (dotted ling), Re = 7000 and Ro =
2.3 (dash-dot line) Re = 15000 and Ro = 1.1 (dashed line). The straight solid line in figure is
proportional to ¢~ 1.

Thetotal kinetic energy is defined by the integral over the study domain (nor-
malized by the domain area) of the square velocity, whereas the total enstrophy
isthe integral of the sguare vorticity. Both the total kinetic energy and the total
enstrophy show approximately the same behaviour for the different cases consid-
ered: after an initial slow decrease, 10 minutes after the start of the experiments
the kinetic energy shows atrend proportional to ¢~ and the enstrophy has a trend
proportional to ¢t=3/2. The mean square horizontal divergence is proportional to
t~1 from the beginning. Note that fast rotation (Ro = 1.1 with respect to the case
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with Ro = 2.3) increases the amount of energy and enstrophy in the system, which
isalso large as the Reynolds number is high.

An important indication about the quasi two-dimensionality of the system is
given by the ratio between the mean sguare horizontal divergence and the mean
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Figure 2.12: Time evolution of the ratio € between the mean square horizontal divergence and
the mean enstrophy

enstrophy, which is plotted in figure 2.12. As one can see, five minutes after the
arrest of the rake the square horizontal divergenceis one order of magnitude lower
than the mean enstrophy in all the experiments considered (both slow and fast
rotation and low and high Reynolds number), providing a proof of the quasi two-
dimensionality of the flow. Note that the values of the horizontal divergence can
be overestimated due to the possible presence of spurious vectorsin the lower part
of the velocity fields, where the laser illumination of the flow isless efficient.

2.4.2 Cross-sections of kinetic ener gy, vorticity and Q-functionin vor-
tices

Figures 2.13-2.16 provide cross-sections of different quantities in vortices that
emerge in the four cases described above. Cross-sectionsare given at two different
times, i.e., 10 minutes and 40 minutes after the arrest of the rake.

The overall aspect of the different cross-sections is similar to what is found
in numerical simulation of two-dimensional turbulence (see e.g. Elhmaidi et .al
1993). Nevertheless, differences are clear among the different experiments. High
Reynolds numbers and fast rotation (small Rossby number) lead at late times to
vortices that still have a high peak of vorticity and well defined profiles of kinetic
energy and Q-function, as well as large sizes (up to 80 cm in the cases presented
here).

It is clear, however, that the vorticity peak decreases as time goes on, and re-
duces more than one half. Another characteristic that can be seen in the figures
(but also in the Q-value fields at late timein figure 2.8) is that there is no a clear
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circulation cell around the vortices, in all the cases discussed here (above dl at late
times, there are no rings of high positive Q around vortex cores with high negative
Q-values). The strain field around the vortex cores, therefore, seemsto be weak in
comparison with numerical simulationsof two-dimensional turbulence. Thismight
have an effect on the dispersion laws of passive tracers in quasi two-dimensional
turbulence, as anomalous dispersion is often related to the presence of circulation
cells around vortex cores (see section 3.1).
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Chapter 3

Transport of passivetracersby
coherent vortices. alaboratory
view

Lagrangian dynamics of passive tracers and transport by coherent vortices in lab-
oratory experiments is the central topic of this chapter. Tracers consist both in
float-liketracers seeded in the fluid and numerical tracerswhosetrajectoriesare ob-
tained by integration of the Lagrangian equation of motion, by means of a pseudo-
experimental technique that uses experimental Eulerian fields asinput data. Trap-
ping of passive tracers in vortex cores and the impermeability of vortex edge to
inward fluxes of tracers are discussed.
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3.1 Numerical background on transport by coherent
barotropic vortices

Coherent vortices have been studied numerically from both the Eulerian and the
Lagrangian pointsof view. The Lagrangian approach is used to examine the trans-
port properties of passive scalars and/or passive tracers® in turbulent flows charac-
terized by the presence of fully-developed vortices. In particular, coherent vortices
have been shown to be very efficient in trapping passive tracers for long times
and transporting them over large distances (Elhmaidi et al. 1993, Babiano et al.
1994, Paparella et al. 1997). Furthermore, vortices show a strong impermeability
to inward fluxes of particles, due to the strong gradient of vorticity at their edges
(Mclntyre 1989).

Figure 3.1 shows these key properties of vortices. In panel (a), two ensembles
of passive tracers are seeded inside a two-dimensional, freely decaying, turbulent
vorticity field, whose initial conditionsare the same asin figure 1.3a; 1800 yellow
tracers are seeded inside the core of an anticyclonic vortex, whereas 1800 green
tracers are seeded in the turbulent background. After a long time, compared to
the eddy turnover time, the evolved distribution of particles in panel (b) shows
that particles seeded in the vortex remained there during the turbulent evolution,
whereas particles seeded in the background spread throughout the field without
entering any vortex.

Coherent vortices act as "islands’ of regular motions, in contrast with the La-
grangian chagticity which characterizes the turbulent background (Babiano et al.
1994), and passive tracers display an amost null radial relative dispersion? and
a linear azimuthal dispersion in vortex cores (Provenzale et al. 1999). Thisis
shown in figure 3.2, which represents a zoom of an anticyclonein the field shown
in figure 3.1, seeded with passive tracers placed on aradial line. After a (nondi-
mensional) time T = 13, amost no radial dispersion is evident, while one can see
azimuthal dispersion due to the differential rotation inside the vortex core. Two
radially nearby particles, therefore, undergo circular motions around the vortex
centre, lying amost always on the same orbits, but with slight different azimuthal
velocities.

Numerical simulations have also pointed at the presence of coherent vortices
(and, in particular, of the circulation cells around vortex cores) to interpret the
anomalous dispersion regime at intermediate times, which has been found in the
absolute dispersion® curves in two-dimensional turbulence, which is neither bal-

1An advected scalar is a general scalar entity, such asthe concentration of dye, which satisfiesan
advection-diffusion equation. Tracers, on the other hand, are individual particles, idealy point-like
and massl ess, whose equation of motion is given by the equival ence between the Lagrangian and the
Eulerian velocities at the tracer positions. They are also called Lagrangian tracers or Lagrangian
particles. The attribute " passive” means that the dynamics of the scalars or of the tracers does not
influence the dynamics of the flow

2Relative dispersion is defined as the mean square displacement at time t between a pair of ini-
tially nearby particles.

SAbsolute dispersion (also called single-particle dispersion), A2 (t,to), provides a measure of
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Figure 3.1: Two ensembles of passive tracers are seeded in afreely decaying, 2D turbulent field
with fully-developed vortices: 1800 yellow tracers are seeded inside the core of an anticyclonic
vortex, while 1800 green tracers are seeded in the turbulent background (panel a@). The evolved
distribution in panel (b), after a (nondimensional) time T' = 13, showsthat vortex core are able to
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periodic square domain with size 2z and using atime step d¢ = 10 ~%. Theinitial conditionsfor the
vorticity field arethe sameasin figure 1.3a.
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Figure 3.2: Zoom of an anticyclonic vortex in the vorticity field shownin figure 3.1b. Thevortex is
initially seededwith passive particles placed onaradial line. After a(nondimensional) timeT = 13,
tracers inside the core show almost no radia dispersion but only azimuthal dispersion due to the
differential rotation.

the mean square displacement of individual particles at a certain time t, as function of their initia
positionsat time t,. The averageis calculated 0v8§the particle ensemble.



listic (A%(t) o t2) nor Brownian (A%(¢) « t), but is characterized by a trend
A%(t) o t°/* (Elhmaidi et al. 1993).

3.2 Experimental Lagrangian data

The experiments carried out in the "Coriolis’ rotating tank have also the purpose
of verifing some properties of transport by coherent vortices from the laboratory
point of view. In order to do this, together with the Eulerian data provided by the
PIV technique, we have collected L agrangian data provided by both float-like trac-
ers (direct Lagrangian data) and numerical tracers whose trajectories are obtained
by integration of the equation of motion by using the experimental velocity fields
(indirect Lagrangian data).

Float-like tracers are composed by a buoyant stick and an approximately el-
lipsoidal container in the lower part (the "balloon™), see figure 3.2. Iron pellets
are placed inside the balloon, in order to equilibrate the float at a certain depth.
We used floats with balloons at 20 cm depth. The particular shape of these floats
avoids "sticking effects’ due to surface tension. The floats are furnished with a
fluorescent upper bright stick to visualize their path and to record their positions
by the camera. The frame rate acquisitionisin this case higher than for PIV, up to
one frame every 5 seconds, but necessarily the total acquisitiontime is shorter (up
to 15 minutes).

Although the size of these tracersis not negligible, they can provide important
gualitative information on particle transport. Their inertia, as pointed out in the
last chapter, is important above all in a short, initial transient of time after they
are released in the fluid (with null initial velocity); afterwards, their dynamics ap-
proaches the dynamics of Lagrangian tracers, except for small scale motions (large
wave numbers) or high frequency motions that are filtered out. The experiments
performed in the large-scale " Coriolis’ tank deal with properties of the turbulent
flow at small wave numbers and low frequencies, and the tracerswe use are able to
catch much of the dynamicsin the interesting range.

Float-like tracers are used above all in combination with LIF technique, when
coherent structure are well recognized; they cannot be used in combination with
Particle Image Vel ocimetry, because of the possible shadow effects that arise when
the stick or the balloon below the water surface crossesthe laser sheet. The vortices
or the turbulent background are seeded with these tracers (we have used up to 25
tracers in each experiment) with the aim of studing the impermeability properties
of coherent structures.

Because of the technica difficulties to obtain long sequences of many La
grangian tracer tragjectories with high sampling frequency in a large-scale exper-
iment, the technique we use to obtain trajectories of passive tracers is pseudo-
experimental. The ideaisto use the time sequences of the Eulerian velocity fields
provided by PIV, interpolated in time and space in order to obtain high frequency
and large wavenumber samples, and to integrate numerically the equation of mo-
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Figure 3.3: Sketch of afloat-like tracer used asa Lagrangian tracer. See description in the text. In
thefigure, units arein millimeters.

tion for Lagragian tracers:
dX

E = u(Xa Ya t)a (31)
where u is the experimental velocity interpolated in the position X = (X, Y) of
the numerical tracer.

This technique is often used to extract Lagrangian data from meteorological
wind field, by interpolating in space and time the Eulerian data provided every
six-twelve hours over a certain region (see Paparella et a. 1997 for a geophysical
application of thistechniqueto the Antarctic polar vortex). One of the crucial point
for the use of thistechniqueisthe temporal resolution of the sequence of the veloc-
ity fields. The experimental, original sampling has been limited to a frequency of
1/30 Hz, dueto data storage problems occurring for very long sequences. Thistem-
poral resolution is not sufficient for smooth integration of equation (3.1). The cri-
terium | use in order to evaluate the requested temporal resolution is an equivalent
of the Courant-Friedrichs-Lewy (CFL) stability criterium: the minimum sampling
frequency that is requested for a certain experiment is given by:

1 v

7 > Az’ (32
where u is the maximum value of the velocity components and Az is the grid
spacing. This criterium ensures that the position of each tracer does not change
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more than a grid step during every time step. For the experiments described here,
having a grid resolution of 3.6 cm, §¢ = 1 s has been determined as a sufficient
temporal resolution.

Both the tempora and the spatial interpolation is performed by using a spline
algorithm, respectively cubic and bicubic. The reason for this choice lies in the
smoothness of the interpolating spline function, which is also smooth in the first
derivative (gradients). The time integration of the equation of motion for La
grangian tracersis performed by using athird-order Adams-Bashford scheme.

Both for direct and for indirect Lagrangian data, one big problem is given by
the lack of boundariesin the camera view field. This meansthat tracers can easily
and rapidly get out of the view field, making very difficult the evaluation of late
time statistics, such as absolute dispersion or maximum Lyapunov exponent. On
the other hand, the distance of the camera view field from the channel wallsassures
that boundary effects can be neglected.

3.3 Laboratory results on transport by barotropic vor-
tices

The results discussed in this section and in the following of the chapter concern
some experiments performed with fast tank rotation (period of 7 = 50 s), medium
rake speed (U = 6.5 cm/s) and coarse rake spacing (35 cm). This conditions
correspond to an initial Rossby number Ro = 1.1 and an initial Reynolds number
Re = 15000. Together with the creation of initial turbulence by means of therake,
some results obtained by using the cylinder are also discussed.

3.3.1 Impermeability toinward and outward tracer fluxes

The experiments we have carried out in freely-decaying turbulent flows confirm
that coherent vortices have a strong capability of trapping passive tracers for long
times, much longer than the eddy turnover time and comparable with the vortex
life-time. Release of tracers trapped inside a vortex occurs during vortex-vortex
interactions, above all during merging processes (see next section).

Figures 3.4, 3.5 and 3.6 show pictures of vortices seeded with either fluores-
cein or with the microscopic particles used for the PIV. The vortex in figure 3.6 is
generated (inside a background turbulence obtained by means of the rake) by stir-
ring the water inside a cylinder lowered into the channel at a pre-selected position,
as explained in section 2.2. Due to the zero mean circulation into the flow, this
method does not yield, generally, a monopolar vortex, but rather a tripole, at least
at late times.

Trapping and impermeability are evident in figure 3.4, where the core of the
anticyclone in the dipole is seeded with PIV particles (blue bright colour) and the
cyclone isunseeded. Fluorescein is seeded in the background (green colour). The
core of the cyclone remains devoid of fluorescein. This latter does not enter the
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vortex except for molecular diffusion at late times. A similar situation is depicted
in figure 3.5, where fluorescein is released inside the large vortex on the right,
whereas PIV particles are released in the two smaller vortices. Even if the two
smaller vortices are in the process of merging, there is no exchange of material
between the two cores at this stage. Trapping and regular motion of PV and float-
like tracers are evident in figure 3.6, where tracers are released in an artificially
created vortex which, at this early stage, shows the onset of instabilities at the
edge.

Figure 3.4: A picture of a dipole, where the core of the anticyclone has been seeded with PIV
particles and the cyclone is unseeded. Fluorescein is seeded between vortices. The core of the
cycloneremains devoid of fluorescein. Photo: A. Provenzale.

The fact that tracers seeded inside coherent vortices are trapped for long times
is also evident in figure 2.5 shown in chapter 2, where float-like tracers are rep-
resented by white points. Thus, one can observe that strong tracer trapping takes
place in non-merging vortex cores, and thisis associated with a well-defined im-
permeability of the vortex edge to inward and outward tracer fluxes.

The results of the observations are also confirmed by means of the pseudo-
experimental Lagrangian technique. Figures 3.7a and 3.7b show the initial release
of two patches of passive tracers and their evolved distribution at later time. A
total of 1800 tracers (red) are released inside a cyclonic vortex which does not
interact much with the others during the evolution of the turbulent field, whereas
1800 (black) tracers are released into the background. Asshowninfigure 3.1 for a
numerical simulation, also inlaboratory experiments the patch in the vortex coreis
trapped for many rotation periods, whereas the patch in the background is stretched
and spread throughout the turbulent field, without entering any vortex.
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Figure 3.5: This picture shows three vortices. Fluorescein is released inside the large vortex on
the right, whereas particles are released in the two small vortices. The background is contaminated
with both fluorescein and PIV particles. No exchange of fluid occurs between the cores of the two
smaller vortices, even if they are in the process of merging. Photo: A. Provenzale.

Figure 3.6: A picture of a monopolar vortex that has been created by using the cylinder with
rotating blades. The tracersinside the vortex core (particles and float-like tracers) display aregular

motion around the center. Photo: A. Provenzale.

74



250}

200}

y (cm)

100

501

250}

200

y (cm)

100

501

150

(@) t=10 min

50 100 150 200 250

150

X (cm)
(b) t=20.5 min
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3.3.2 Regular motion inside vortex cores

As already shown in some previous figure, the motion of passive tracers inside
vortex coresischaracterized by regular, circular trajectories around the centre (fig-
ure 3.8 shows a typical trajectory in acyclone), in contrast with the chaotic nature
of trgjectoriesin the turbulent background.
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Figure 3.8: A typical trajectory of apassive tracer inside a vortex core, obtained by means of the
pseudo-experimental technique.

Regular motion of float-like tracers inside a cyclonic core can be appreciated
in the time sequence of figure 3.9. Thisfigure is a zoom of the upper left vortex
in the sequence of LIF images in figure 2.5, much before the merging process
that it finally participatesin. Tracers (white double points) are released inside the
core and, apart for drift effects during an initial transient, they undergo regular
trajectories around the center; differential rotation in the vortex allowsfor alarger
speed of the most external tracers.

Theazimuthal dispersionwhich characterizestracersinsideavortex coreisbet-
ter shown by reproducing the sameinitial distributionof tracersasinfigure 3.2, i.e.,
aradia line starting from the vortex centre. By means of the pseudo-experimental
L agrangian technique, abeautiful spiral of tracersisobtained after sometime (three
minutes after the release), which also confirms the almost null radial dispersion of
passive particles inside vortices.

3.4 A Lagrangian view of vortex merging

One of the most impressive processes that one can watch when visualizing a turbu-
lent field with fluorescein is, in my opinion, the merging of two same-sign vortices.
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Figure 3.9: This figure is composed by a sequence of frames taken every 5 seconds. It shows
(during a time interval of 55 s, which corresponds approximately to the eddy turnover time for
the present experiment) the evolution of a cyclone and the deplacements of some float-like tracers
seeded into the vortex core. Thedoublebright point isan effect of thelaser illumination; the shadows
indicate the tracer positions. Regular trgjectories inside the core are displayed by the motion of the
tracers.

One of these episodesis depicted in the sequence of figure 3.11 by using the LIF
technique, another is represented in figure 3.12 by using the pseudo-experimental
L agrangian technique. Both of these visualizations, however, do not render entirely
the speed of the process, which can be appreciated only by means of an animation
(otherwise, during areal experiment).

As shown in chapter 2, merging of vorticesis the best way to increase vortex
size and to reduce vortex number. Although merging occurs only when two vor-
tices are close enough to each other, there is a large time interval during which
advection of vortices by the turbulent field and the large number of coherent struc-
tures make this process very common. From the Eulerian point of view, merging
is characterized by an initial interaction of two same-sign vortices which start to
exchange material from their edges. A fast circling motion of one vortex around
the other occurs afterwards, up to the compl ete coal escence of the two structures.

A Lagrangian view of the processis provided by using tracers seeded in one
of the two merging vortices, or fluorescein throughout the turbulent field. Two
main results are evident from figures 3.11 and 3.12. The first one is that during
vortex merging, processes of filamentation lead to the expulsion of tracers out of
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Figure 3.10: Evolved distribution after t = 180 s of agroup of 3600 tracersinitially placed on a
radial line starting from the vortex centre. Azimuthal dispersiondueto differential rotationisevident.

the coherent structures, the second one is that one can clearly distinguish the two
vortex cores as individual entities even after the merging process has completed
and only one vortex remains.

Entering the details, the first stage of the merging is characterized by a sim-
ple interaction of the two vortices which exchange materials through the saddle
point localized in the middle of the line connecting their center (clearly visiblein
figure 3.12 at time ¢ = 30 and ¢ = 32.5min). At this early stage, tracers which
pass from one vortex to the other or are gjected into the background come from the
outer shells of the merging vortices (black colour in figure 3.12). This stage can
also evolve into incomplete merging of the two vortices, if the distance between
the vortex centresis above a certain critical value (Melander et al. 1988) or if the
externa strain field keeps them apart; in thiscase, just some material coming from
one vortex becomes part of the other.

If the merging process goes on, the following stage is characterized by stretch-
ing and elongation of one of the two vortices, normally the weaker one. At this
stage, the core of the elongated vortex is still distinct, although tracers belonging
to different shells start to mix together (figure 3.12, t = 34 min). Circling motion
of the two vortices and differential rotation act together to produce vorticity fila-
ments and tracer filaments. The tracers in the filaments do not belong to the inner
shells, confirming that also during merging processes, trapping of tracersin vortex
coresisvery efficient (figure 3.12, ¢ = 35 min).

The last stage of the merging is the axisimmetrization of the vortex derived
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from the coalescence of the two original vortices. The final vortex has generally a
larger size, if the two merging vortices have sizes comparable, while the maximum
vorticity is amost conserved. Inside the core, tracers coming from the original
vortices are still separated (although it is no more possible to distinguish the orig-
inal shells). Filaments are released into the turbulent background, where they are
dissipated by viscosity. Only on diffusive time scales the tracer populations of the
two original vorticeswill mix together.

Experimental evidence, therefore, confirm the results obtained by means of
numerical simulations of barotropic turbulence, and underline the importance of
vortex structuresin the overall transport of passive tracers. Vorticesin a turbulent
flow are shown to be topological areas with peculiar characteristics with respect
to the turbulence itself, from both the Eulerian and the.Lagrangian points of view.
The discussion on transport properties by coherent vortices will continue through
next chapters, by considering real particles and tracers with finite size and finite
inertiawith respect to the fluid.
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Figure 3.11: Sequenceof LIF pictures showing the merging processof two cyclonic vortices. The
time step between two subseguent images is 50 s. The experimental conditions are the same asin
figure 3.7.
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Figure 3.11: (continued)
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Figure 3.12: A view of vortex merging by means of the pseudo-experimental technique. The
different panels show different times of the evolution of a patch of (3600) passive tracers seeded
inside a merging cyclonic vortex. Different initial distance from the vortex centre is indicated by
different colours. The experimental conditions are the same as in figure 3.7. ThetimeT = 0
correspondsto the arrest of the rake.
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Chapter 4

L agrangian particles and
Impurities

Lagrangian particles are ideal neutrally-buoyant elements with infinitesimal size;
their dynamicsis described by the equivalence between the Lagrangian velocity at
the particle and the Eulerian velocity of the particle position, and their trajectories
are assimilated to fluid particle trgjectories. Real particles embedded in a fluid,
however, have small but finite size, and may have different density with respect
to the surrounding fluid. For these impurities, the equation of motion comes from
Newton’s second law of dynamics. This chapter is devoted to the discussion of the
equation of motion for impurities, to the description of the numerical set-up used to
integrate the trajectories of individual impurities in a barotropic two-dimensional
model, and to review some previous resultson impurity dynamicsin flowswith the
presence of vortices.
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4.1 Fluid elementsand Lagrangian particles
versusimpurities

Most of Lagrangian dynamics deals with ideal neutrally-buoyant elements which
are considered point-like and massless. The dynamics of such elementsis assim-
ilated to the dynamics of fluid particles, therefore the same flow can be viewed as
an evolving field (Eulerian description) or an ensemble of moving fluid particles
(Lagrangian description). The link between the two descriptions is given by the
equality between the Lagrangian velocity and the Eulerian vel ocity in the position
of thefluid particles:
dXy

Ur="a =
where U (t) is the Lagrangian velocity of afluid particle whose position is given
by X;(t), and u(Xy, t) isthe velocity of the Eulerian field at the position X ;.

Giventhe equation (4.1), it should alwaysbe possibileto pass from one descrip-
tion to the other, at least theoretically. Practically, it is possible only for stationary
two-dimensional flows, whereas non-stationary flows displays chaotic Lagrangian
dynamics even if the Eulerian velocity field isvery simple (e.g., time periodic) and
non-turbulent; see, for instance, Aref (1984), Aref & Balachandar (1984), Falcioni
et al.(1988), Beloshapkin et al. (1989).

The description of a flow in term of trgjectories of fluid elements is only ac-
cessible theoretically and numerically, not always experimentally. Laboratory and
in-situ experiments use tracers which are not fluid elements, but external ”impu-
rities’, although their characteristics approach those of fluid elements: the tracers
have small size with respect to the fluid length scale and they have almost the same
density as the fluid in which they are embedded. Such tracers are called quasi-
Lagrangian particles or quasi-Lagrangian tracers, since they provide Lagrangian
information almost as though they were fluid elements. Nevertheless, they are nei-
ther point-like (they have a finite size) nor massless (they may have small inertia
with respect to the fluid).

The class of small particleswith finite size and/or inertia(i.e., density different
from the density of the fluid in which they are embedded), is atogether indicated
by means of the term "impurities’. Impurities may be such different as quasi-
neutral buoyant tracers used in laboratory experiments (PIV tracers, for instance)
or in in-situ geophysical measurements (floats and drifters in the oceans, balloons
in the atmosphere), but also droplets or bubble in a two-phase flow, dust grainsin
the atmosphere, settling particles in turbulent flows or dust particles in the early
solar nebula.

For such particles, equation (4.1) isno more valid. The equation of motion for
impurities comes from Newton's second law of dynamics, where one has to take
into account al the forces which can act on a small, foreign particle embedded in
aviscous advecting flow:

u, 4.0

d?X
mﬁ =F(U,u); 4.2
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here, m is the mass of the impurity, X and U(¢) are, respectively, its position and
velocity, u is the Eulerian velocity and F is the sum of the forces acting on the
impurity (which are usually functions of the impurity velocity and the Eulerian
velocity).

It is evident that the dynamics of impurities can be totally different from the
dynamics of fluid elements, aswell as from the dynamics of ideal Lagrangian trac-
ers. Eulerian description of the flow and Lagrangian trajectories of impuritieshave
not abiunivocal correspondence, not even in stationary flows: the Eulerian velocity
field determines the impurity trajectories, but the contrary does not apply.

4.2 Theequation of motion for passively
advected impurities

4.2.1 Historical background

The equation of motion for small impuritiesthat are passively advected by aveloc-
ity field has been matter of intense debate since thetime of Stokes (1845), who for-
mulated the steady-state equation of motion of a sphere in a viscousfluid, Boussi-
nesq (1885a, 1885b) and Basset (1888a, 1888b), who devel oped independently the
mathematical framework and the expression for the unsteady motion of a solid
sphere inside an infinite, viscous and quiescent fluid, up to the recent formulation
by Maxey & Riley (1983) in non rotating systems, which seems to be the dominant
reference for most recent papers on this subject, both from the physical and the
engineering points of view.

Maxey & Riley’'s egquation of motion is developed for very small (with re-
spect to the length scale of the flow), rigid, spherical impuritieswith small particle
Reynolds number®. The impurities are considered as passive particles, i.e., they
do not influence the dynamics of the advecting flow, except for local disturbances
which are reflected in the equation of motion itself and are used for its derivation.
In thisformulation (whichisvalid for a three-dimensional flow), forces that act on
an impurity are provided by an "inertial” term which is the force exerted by the
flow directly on the impurity (and provided by the Navier-Stokes equation), the
Stokes drag force, the gravitational force, the so-called " added-mass’ term which
is related to the boundary layer that forms around the moving impurity, and the
Basset term which takes care of the past history of the impurity (it is aso caled
"memory” term). Other less important terms are given by the so-called " Faxen
corrections’, which are due to the non-uniformity of the advecting flow.

The formulation by Maxey & Riley isvalid in non-rotating reference frames,
furthermore, it doesnot consider the possiblelift force which ariseswhen the spher-
ical particles rotate in a fluid with different local tranglational velocity ("Magnus

The particle Reynolds number is defined as Re im, = Wa/v, where W is taken as arepresen-
tative velocity scale for U — u, the velocity of the impurity relative to that of the surrounding fluid,
a istheradius of the spherical impurity and v is the kinematic viscosity of the fluid.
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effect”, Magnus 1861) or simply move in a shear flow (" Saffman effect”, Saffman
1965). Usually the Magnus effect is difficult to evaluate, except than in very spe-
cific situations; on the other hand, Saffman proposed a model for the expression of
the lateral force (i.e., lift force) on a spherein shear flows, which isused mostly as
an added component to the total hydrodynamic force acting on an impurity. More
recently, Auton (1987) and Auton et a. (1988) have calculated the lift force on a
spherein rotating flows.

A complete of the history of the equation of motion for impurities in non-
rotating systems is provided by Michaelides (1997). In rotating reference frames,
apparent forces arise (Coriolisforce and centrifugal force), thusin the equation of
motion one hasto take them into account. Tangaet al. (1996) and Chavanis (2000)
have recently dealt with impurities in a rotating system. In these two cases, the
rotating reference frame is the early solar nebula and the key issue is the effect of
the Coriolisforce on very heavy dust particles.

4.2.2 Theequation of motion for impuritiesin a 2D rotating flow

In this thesis, | address the study of the dynamics of impurities in a barotropic,
rapidly rotating, turbulent flow. In particular, my purpose is to clarify the role
played by coherent vortices in the dynamics and transport of finite-sized particles
which are lighter or heavier than the surrounding fluid. The special case of finite-
sized, neutrally-buoyant tracers is also considered in chapter 7; this case has an
immediate application to |aboratory experiments.

The system in which | study the dynamics of impurities is two-dimensional
freely-decaying turbulence. No free-surface or ageostrophic effects are considered,
thus my results are not directly applicable to a geophysical model. Nevertheless,
thisis a basic study of the impurity dynamicsin aturbulent flow characterized by
fully-developed coherent vortices, thus the choice of a simple model is, without
loss of generality, the first step to understand the behaviour in more complicated
flows.

A two-dimensional equation of motion for impuritiesisused. It comesfrom the
formulation by Maxey & Riley (1983), which is extended to a rotating reference
frame. For very small?, rigid, spherical impurities with a small Reynolds number,
embedded in a 2D rotating fluid layer, the equation of motion are written as:

d*X Du  9psv <dX > 1 d<dX >
u

Dt dt 2P a \at

Pergr = PiDr T 242
dX 1 dX
—28 X <,0p% - ,Ofll> + 5,0,: <E - u> X w, 4.3)

where X(t) = (X (¢),Y(t)) isthe instantaneous position of the impurity in the
two-dimensional Eulerian velocity field u(x, t) = (u(X,t),v(X,t)), d/dt = 3/0t+
(dX/dt) - V isthetotal time derivative following theimpurity (the “particle deriva-
tive"), D/Dt = 3/0t+(u-V) isthematerial derivativefollowingthefluid motion,

24 « L, wherea istheradius of theimpurity and L acharacteristic length scale of the flow
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a isthe radius of the spherical impurity, p,, and p; are respectively the density of
the impurity and of the fluid element with the same volume, v is the kinematic
viscosity, Q2 isthe angular velocity of the rotating reference frameandw = V x u
isthe vorticity.

Thel.h.s. of equation (4.3) representsthe Lagrangian acceleration of the impu-
rity due to the forces acting on it, which are provided by terms on ther.h.s. of the
equation. These are:

) pf%, the force exerted by the fluid on the impurity, in general provided by
the Navier-Stokes equation applied in the instantaneous position occupied
by the particle. Thisisalso called “inertial term”;

(i) — 92” e (% — u), the Stokes drag on the impurity. This term depends on the

relative velocity between the fluid and the particle. The present formulation

isappropriatefor laminar motion; for turbulent flows, thisterm issometimes

written as —C' (% — u) ‘Q — u‘, which has, however, a similar effect on

dt
the dynamics;

(i) —1ps2 (% - u), the added mass term. Thisis due to the boundary layer

that forms around the moving impurity;

(iv) —2Qx (pp% - pf'll) , the Coriolisforce that actsonly in arotating reference
frame and depends on the velacity difference between the impurity and the
fluid, weighted by the respective densities;

(v) %pf (% - u) X w is thelift force in the formulation by Auton (1987) and
Auton et al. (1988) in rotating flows.

Having in mind possible geophysical applicationsof the 2D flow model inwhich |
study the dynamics of impurities, buoyancy and centrifugal force do not compare
into equation (4.3), since they depend on the gradient of the total (gravitational and
centrifugal) potential, which ismostly in the local vertical direction on the Earth’s
surface; buoyancy and centrifugal force, therefore, do not influence the horizontal
motion.

Further on, | disregard the effect of the so-called Faxen corrections, which are
terms proportional to a?V2u, due to the non-uniformity of the Eulerian flow. The
reason isthat, performing a scale analysiswhere L is the length scale of the flow
and a is the particle radius, the Faxen terms are of order O (a?/L?) with respect
to the other terms, and can thus be discarded, since we suppose a < L. | do not
consider another term in equation (4.3), that isthe Basset term, or “memory term”.
The Basset term is assumed to have negligible influence on the impurity dynamics
in rotating flows; see Paradisi & Tampieri (2001) for details about the effects of
thisterm on theimpurity dynamicsin non-rotating systems.
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The equation of motion (4.3) may be conveniently nondimentionalizedin order
to identify the parameters which govern the dynamics of theimpurities:

d?X Du dX 1 du

- = A— - - _ A=

dt? Dt < dt “> LT
A dX 1, (dX

where now X, u and ¢ are nondimensional variables and Z is the versor of the
local z-axis: | consider, in fact, an angular velocity vector for the rotating system
given by © = (0, 0, ©2,), which can be thought as the local vertical projection of
the Earth’sangular velocity, andw = (0, 0, ¢) istherelative vorticity vector, which
has only the vertical componentin a 2D flow.

The free parameters of equation (4.4) are given by the Rossby number Ro =
U/fL (where f isthe Coriolis parameter, which is equal to 2€ sin(8) if we con-
sider afluid layer on the f-plane at | atitude 8) and by:

2
5=, 4=2a <£> Re™, (45)

a

where L and U are respectively the length and velocity scale of the flow, Re =
UL /v istheReynolds number, A = 26/ (2 + §) isthe scaled density ratio, due to
the presence of the added mass term, and + is sometimes called the Stokes number
or Stokesparameter. The crucial difference among light, heavy and neutral impuri-
tiesisgiven by the parameter §: 6 < 1 isfor impuritieslighter than thefluid, § > 1
characterizes heavy impuritiesand § = 1 isfor neutrally-buoyant tracers.

4.3 Numerical set-up

After the discussion on impurity dynamics in simple, stationary, analytical flows
in chapter 5, chapter 6 and chapter 7 are devoted to the study of impurity dyamics
in a two-dimensional turbulent flow. The numerical set-up used at this purpose is
briefly outlined in this section.

The incompressible, homogeneous, rotating, 2D advective flow is governed
by the (nondimensional) 2D vorticity equation (1.47) in free decay. Newtonian
viscosity is replaced by hypeviscosity, in order to reach higher effective Reynolds
numbers and to have dissipation at smallest scales (see footnote at page 27. The
equation for the advective flow thus reads:

0

a_g +J (¢a C) = _V2V4Ca (46)
where ¢ = V?%3 is the vertica component of the relative vorticity, + (z, y) is
the stream function, defined in such a way that the components of the horizontal

velocity are u (z, y) = —dv¢ /0y andv (z, y) = 0v¢ /0=, J isthe Jacobian operator
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J [a,b] = azb, — ayb, and v, = 5 - 1078 is the hyperviscosity coefficient ( see
Benzi et al. 1987, McWilliams 1984, 1990, Larichev & McWilliams 1991).

| perform the numerical experimentsin a doubly periodic square domain with
Size 2, using a pseudospectral code with standard 2/3 dealiasing and athird-order
Adam-Bashford time integrator scheme for the Eulerian equation (4.6); the spatial
resolutionis512 x 512 grid pointsand the non-dimensional time stepisdt = 10 ~3.

The positionsof impurities are obtai ned by integration of the (nondimensional)
equation of motion (4.4). A third-order Adam-Bashford timeintegrator scheme and
a sixth-order spectral spline interpolator are used for the integration of this latter
equation.

Since | am interested in the dynamics of impurities in fully developed two-
dimensional turbulence, | firstly perform the numerical integration of equation (4.6)
until a nondimensional time ¢; = 20, which is equivalent to 664 times the initial
eddy turnover time r.qq, (¢ = 0). Theinitial conditionsfor thevorticity field inthis
first step are the same asin McWilliams (1990), i.e. a Gaussian random realization
for the phases of each Fourier component of thefield, using afixed energy spectrum
and an initial kinetic energy Eq = 0.5 (seefigure 1.3a). Secondly, 4096 impurities
are seeded uniformly in the vorticity field at time ¢; = 20, dominated by fully
developed vortices (the pattern of the turbulent field is similar to that depicted in
figure 1.3b), and the numerical simulations are performed until time ¢; = 35,
corresponding to 47 eddy turnover times at ¢ = ¢; (at thistime, the turbulent field
is shown by figure 1.3b). The initial velocities of the impurities are equal to the
Eulerian velocity (except fot the special case of neutrally buoyant impurities, as
specified in chapter 7, for whichinitial velocitiesare zero).

The free parameters in equation (4.4) are chosen accordingly to geophysical
scales. For a two-dimensional model of the ocean or the atmosphere on the f-
plane, for instance, the typical scalesare L = 10° mand U = 0.1 + 1 m/s, which
give aReynolds number Re = 10'° = 10! and a Rossby number Ro = 0.1 = 0.01
at mid-latitudeswhere f = O (10~*). Using these scale values, and considering
aratio (L/a) = O (10° + 10°), the order for the v parameter is O (10). | thus
study the dynamics of impurities with + in the range 5 - 50 and Ro in the range
0.01 = 0.1.

4.4 Previousresultson impurity dynamics
in vortical flows

Several studies have been carried out in the last ten years in order to understand
the dynamics of small impurities embedded in a fluid when vortices are a strong
component of the flow. Most of them have been performed by using very simple,
mostly stationary, 2D analytical flows characterized by the presence of a sequence
of cellular vortices. In non-rotating systems, vortex centres (both cyclonic and
anticyclonic) are asymptotically stable fixed points for light impurities (§ < 1),
which are attracted toward the center of vortices, whereas they are unstable for
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heavy particles (§ > 1), which are gjected out of vortex cores (Crisanti et al. 1990,
1992, Tanga & Provenzale 1994). Inthe case § = 1 (neutral impurities), theinitia
relative velocity plays an important role in the dynamics: for zero initial relative
velocity, vortex centres are neutrally stable points, but finite relative velocities al-
low the neutral impuritiesto approach the vortex centres in a transient time whose
duration is determined by the Stokes parameter (Babiano et a. 2000).

In rotating systems, the Coriolisforce acts as a centripetal force for heavy im-
puritiesin anticyclonic vortices, and tends to push them toward the center of anti-
cyclones, providing, for instance, a possible astronomical mechanism for dust par-
ticles aggregation and formation of planetesimalsin the early solar nebula (Tanga
et al. 1996, Bracco et al. 1999, Chavanis 2000). Some other effects, dueto the lift
force and the so-called Basset force that act on an impurity, have been taken into
account by Thomas (1992), Druzhinin and Ostrovsky (1994), Paradisi & Tampieri
(2001).
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Chapter 5

Dynamics of impuritiesin
stationary vortical flows

The dynamics of impurities in stationary, analytical flows, characterized by the
presence of vortex structures, is discussed. In particular, the cellular flow, consti-
tuted by the repetition of a sequence of vortices, and the Gaussian vortex model are
considered. The dynamics of impurities is analyzed with respect to the different
forces that occur in the equation of motion, and with respect to the different gov-
erning parameters. Both non-rotating and rotating reference frames are discussed.

93



5.1 Stationary vortical flow models

As pointed out at the end of the previous chapter, many resultson impurity dynam-
icsin vortices have been obtained by using simple, analytical, stationary, 2D flow
model s constituted by the repetition of asequence of cyclonic and anticyclonicvor-
tices (figures 5.1 and 5.2). These cellular flows may be described by the following
(nondimensional) stream functions:

¢c1 (J), y) — ’¢0 (COS x + cos y) ’ (51)

ez (2,y) = o (cosz - cos y), (5.2

which give different patterns for the Eulerian fields but the same results with re-
spect to the dynamics of impurities: linearization of equations (5.1) and (5.2)
in vortex centres (elliptic fixed points) and in vortex “vertices’ (hyperbolic fixed
points), in fact, leads to the same expression for the two stream functions.

(2 (bj
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W g paiits)
W g paiits)
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¥ (gnd points) ¥ {gnd points)
Figure 5.1: Pattern of the two-dimensional cellular flows described by the stream functions. (a)
Pe1 (z,y) = o (cosx + cos y); (D) Yez (z,y) = Yo (cos z - cos y).

By considering these analytical, advective flow models, linear stability analysis
may be used in the (nondimensional) equation of motion for impurities (4.4), in
order to study the dynamics of light and heavy particles around the fixed points(in
particular, the vortex centres).

Cedlular flows, although useful for obtaining analytical results, have limited
physical correspondence: vorticity and velocity profiles of a vortex in a cdlular
flow are different from the profiles of a coherent vortex in 2D turbulence (see,
e.g., figures 2.13-2.16). A more reliable model of a vortex structure is provided
by Carton et a. (1989), and is often applied to laboratory vortices (see Hopfinger
& van Heijst 1993) and oceanic vortices (see Simpson et al. 1984). Thisis an
analytical model of an isolated, circular, two-dimensional vortex, parameterised by
the vorticity-profile“ steepness’ «. Such avortex isdescribed, in polar coordinates
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(r, 8), by a(nondimensional) expression for the stream function,
T,a
¥ () = —dhexn (27)), (53)
(8%

which depends only on the nondimensiona distance »’ = »/L from the vortex
centre, v, being the value of the nondimensional stream function in the centre and
L the scale of the vortex radius.

The case o = 2 corresponds to a Gaussian profile of the stream function and it
is called the Gaussian vortex model for an isolated vortex:

¥ (r') = —hexp (—12). (54)

In this model, the expressions for the (nondimensional) vorticity, the azimuthal
velocity and the Okubo-Weiss parameter read:

¢ (r") = 4dpg (1 — r'*) exp (—r"?)
ul (') = 2¢pr" exp (—r'?), (5.5)
Q' (r') = —169¢ (1 — 2r'?) exp (—r"Y),

!
andthey are plottedinfigure5.2. Theradial velocity, whichisdefined asu! = — l, %—Qg
r

isthroughout zero. The azimuthal velocity has an extreme (maximum or minimum
depending on the vortex sign) at »' = 1/+4/2 = 0.71, corresponding to the value
Q = 0 (vortex edge). Note that the value vy = (}/4, where ¢ is the vorticity
in the centre of the vortex, isanew free (Eulerian) parameter for the study of the
dynamics of impurities. This vortex model has the advantage to match the kinetic
energy and Q-function curves that charachterize a typical isolated vortex in two-
dimensional turbulence, as shown by the cross-sectionsin figures 2.13-2.16.

The isolated Gaussian vortex model described above consists of a core sur-
rounded by an annulus of oppositely-signed vorticity, in such away that the vortex
contains zero net vorticity. In barotropic turbulence, however, usually a vortex has
a single-signed vorticity. A Gaussian vortex model with single-signed vorticity
can be obtained by writing a Gaussian expression for relative vorticity instead of
stream function:

Cie (') = Goexp (—7) . (56)
Azimuthal velocity in thislatter case reads:
! ! C(I) )
ug (') = 27 [1 — exp (—r 2)] , (5.7)

where the relationship ¢ = ({/4 still applies. Instead of rapidly decreasing to
zero, azimuthal velocity for anon-isolated vortex hasalonger, lessstegptail, which
extends the vortex influence far from its core (see figure 5.3).
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Figure 5.2: Plots of azimuthal velocity (solid line), vorticity (dashed ling) and Okubo-Weiss pa-
rameter (dotted line) for the isolated Gaussian vortex model. Theradial distanceis nondimensional
andyy = 1.

0.8 \ h

Figure 5.3: Plots of azimuthal velocity (solid line) and vorticity (dashed line) for the Gaussian
vortex model with single-signed vorticity. Theradial distanceis nondimensional and ¢, = 1.
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By using the linearized, equivalent Cartesian expression of azimuthal velocity
(5.5) or (5.7) in a neighborhood of the vortex centre, it is easy to verify that one
obtaines the same results as by using the stream function for a cellular flow.

For the linear stability analysis of the equation of motion (4.4) for impurities
around the vortex centres, the four models described above are equivalent. The
difference of the Gaussian vortex model (isolated or non-isolated) with respect to
the simple cédllular flow lies in the nonlinear effect introduced by the presence of
the extreme of the azimuthal velocity at the edge of the vortex, where Q ~ 0.

From now on, | disregard the primes. Variables have to be considered as nondi-
mensional.

5.2 Linear stability analysis of the equation of motion
for impurities

Inside vortex cores, alinear approach may capture the dynamical behaviour of light
and heavy particles, thus a linear stability analysis of the complete equation (4.4)
is performed around the centre of an isolated Gaussian vortex, by using both a
cyclone and an anticyclone (given respectively by the values o > 0 or 159 < 0).
The linearized Cartesian components of the velocity field in the neighborhood of
(0, 0) read:

u(z,y) = —2¢0y + O (22 +4?)°/°)

v(2,y) = +2¢0z + O ((2* +3°)*%) .
Theanalysisisperformed separately in non-rotating and rotating reference frames,

in order to isolate the effects of the Coriolisforce on the impurity dynamics. Fur-
thermore, the role of the lift force is also analized separately.

(5.8)

5.2.1 Non-rotating reference frames

In non-rotating reference frames, and without considering the lift force, the equa-
tion of motion for impurities simply reads:

@ 8o '\ Y Ay (5.9)

The equivalent linearized system of differential equations can be written in matrix
form (I seta = 249 = (o/2, U = dX/dtand V = dY/dt)):

d?X Du <dX > 1. du
A u

X 0 0 1 0 X

d Y 0 0 0 1 Y

d| U | | —a?A —-ay —y —aA)2 U (5.10)
v ay —a’A aA/2 — v

The solution for the linear system is expressed for each component of the impu-
rity position vector in phase space X = (X,Y, U, V) as alinear combination of

97



exponentials, X; ~ >, exp (Axt), where the values \; are the solutions of the
fourth-order eigenvalue equation given by det (4 — AI) = 0 (being A the coeffi-
cient matrix in system (5.10) and | the identity matrix). For thissystem, the eigen-
values are complex conjugates, then only two real partsare distinct. The maximum
relative value between the two distinct real parts determines the behaviour of the
impuritieswhere the linear approximationisvalid: if Re 3y = max (A1, Ag) iSneg-
ative, the vortex centre (which isafixed point for system (5.10)) is a stable point,
since dl the eigenvalues have negative rea parts, and Reys is a measure of the
time needed to the impurity to converge toward the centre, starting from an initial
position X = (X, Yo, Uy, Vo), supposed to be still in the linear regime; if Re s is
positive, the vortex centre is unstable, since there is at least one eigenvalue which
has positivereal part, and Re s gives an estimate of the growth rate of the distance
of the impurity from the initial position in phase space. If all the four eigenvalues
have real part equal to zero, the vortex centre is neutrally stable.

Theparameter ¢ (and thustherelated A parameter) intheinertial and the added
mass terms is fundamental in differing the dynamics of the three types of impuri-
ties (light, heavy and neutral) in vortex cores. Solutionsfor Re s shows that the
value § = 1 (and therefore A = 2/3) represents a separation between two very
different dynamical regimes: for valuesd > 1 (light impurities), the vortex cen-
tres (both cyclonic and anticyclonic) are asymptotically stable points, whereas for
6 < 1 (heavy impurities) these fixed points are unstable. Physically, this means
that vortex centres attract impurities less dense than the fluid and repell impurities
that are denser than the fluid, the further § is from one, the stronger the effects.
The Stokes drag further actsto increase or reduce (according to the value of v) the
speed of approach to the vortex centres of light particles or the speed of removal
of heavy particles, but it does not change the scenario determined by § (see also
Crisanti et al. 1990, 1992 and Paradisi & Tampieri 2001). Inthecaseé = 1 (neutral
impurities), vortex centres are neutrally stable points (real parts of the eigenvalues
are al zero), thus these particles undergo stable circular trajectories around the
centre. But the initial relative velocity plays an important role in the dynamics of
neutral ly-buoyantsimpurities (see chapter 7).

As dready pointed out, the value of Rejs gives an estimate of the capture
time towardsthe vortex centre for light impurities or the expulsion time out of the
vortex core for heavy impurities. The asymptotic behaviours of Re s, at § and ¢
fixed, for small and large Stokes parameters give an estimate of the corresponding

. . . . 1
behaviours of capture and expulsion times as function of +: they are — at small
Stokes parameters and v at large ones (see Paradisi & Tampieri 2001).

5.2.2 Theeffectsof the Coriolisforcein rotating systems

Inrotating reference frames, by addingtheCorioIisforce—%Ro‘lz X <cii—)t{ — du

in the equation of motion (5.9), the matrix form of the linearized system of differ-
ential equationsreads (I sete = Ro™1):
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X 0 0 1 0 X
dlvy | _ 0 0 0 1 Y
d| U | | —aA(e+a) —ay —y -A(%-%) U

|4 ay —alA(e+a) A(5-5) —y |4

(5.11)

For system (5.11), the results change if one considers an anticyclone or a cy-
clone. In particular, for an anticyclone the constant a = 244 is negative, then the
value Ro = —1/21)y iscritical, as the terms (3,1) and (4,2) in the matrix become
zero and the terms (3,4) and (4,3) reduceto, respectively, —a and +a. Itispossible
to verify with some algebra that, in this particular case, two real parts of the four
eigenvalues are zero and the other two are negative, which means that the anticy-
clonic centre becomes rapidly neutrally stablefor Ro = —1/2v¢ = —2/(o, being
(o the negative vorticity in the centre. This does not happen for a cyclonic vortex,
for which a is positive; in this case, a critical valueisgiven by Ro = 1/§4, for
which the system (5.11) reduces to the simplest case, without Coriolis force and
added mass term.

The differences between cyclones and anticyclones with respect to the dynam-
ics of light and heavy impurities inside vortex cores can be summarized by using
the plots of Rejys in figure 5.4, as function of the Rossby number and the Stokes
parameter, in the case with (o = 449 = 40:

e inacyclone, light impurities are always attracted toward the centre, heavy
impuritiesalways escape out of the core. The capture time and the expulsion
time are minimum for large 4 and small Rossby number. These properties
depend of course on the value of the vorticity in the centre: in general, the
stronger the vorticity is, the faster capture or expulsion processes are, espe-
cialy at large v and Rossby number;

e in an anticyclone, for Ro < —2/(, light impurities are expelled whereas
heavy impurities are attracted toward the centre (this result has already been
underlined by Tanga et al. 1996 and recently by Chavanis 2000). A strong
minimum in the capture and expulsion times is evident for small v and
Ro ~ —1/(y. For Ro > —2/(p, on the contrary, light impurities are slowly
attracted and heavy impuritiesare slowly expelled. From a physical point of
view, the discriminating condition is given by the comparison between the
angular velocity in the centre of the anticyclonic vortex, due to the rotation
of thevortex itself, and twice the value of the angular vel ocity of the rotating
reference frame: this comes from the fact that 42 (r = 0) = %2 = 2¢ and
Ro = U/2QL, where 2 isthe angular velocity of the system.

5.2.3 Theroleof thelift force

Lift force does not introduce significant changes in the scenario previously de-
picted. The matrix form of the linearized system of differential equationsreads:
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Figure 5.4: Plotsof Reas (maximum value of the real parts of the eigenvalues of system (5.11))
in the neighborhood of the centre of a Gaussian vortex for light and heavy impurities, as function
of the Stokes parameter and the Rossby number. Panel (a) is for light impurities (§ = 1.2) in a
cyclone, panel (b) isfor heavy impurities (§ = 0.8) in acyclone, panel (c) isfor light impuritiesin
an anticyclone and panel (d) isfor heavy impuritiesin an anticyclone. In al the panels, || = 40.
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Figure 5.4: (continued)
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X 0 0 1 0
dlv | _ 0 0 0 1
al v | | —-aA (e + 2a) —ay —y A (% + 55)
v ay —aA (e +2a) —A(%+%) —

(5.12)

It can be numerically verified that the critical value of the Rossby number oc-

cursat Ro = —1/24)y, such asin the previous case without the lift term. The plot
of Rejys are very similar to the ones showed in figure 5.4.

5.3 Capture of impuritiesby vortices

Linear stability analysis applies rigorously only in a neighborhood of fixed points
(the vortex centre in the case of the Gaussian vortex model). In practice, the results
discussed in the previous section are valid inside vortex cores, far from the vortex
edge.

For the study of transport of impuritiesin vortex-dominated flows, the dynam-
ical behaviour out of vortex cores is important. Because of the presence of the
extreme in the azimuthal velocity at vortex edge, nonlinear effects are introduced
and capture or expulsion of impurities may change dramatically with respect to the
results shown above.

Since linear analysis does not apply outside vortex cores, a different technique
has to be used in order to explore the dynamics of light and heavy particles as a
function of the governing parameters. One possibility is to write the equation of
motion (4.4) in polar coordinates (r, #), with the origin in the centre of a Gaussian
vortex, and to analyze the trajectories of impuritiesin phase space.

Theradia component of equation (4.4) (without considering thelift force) sim-
ply reads:

2 2
CZTI; = % [(R%) - gAugl - 'ycfi—]: + %Ro_1 <R§ - 5uo> , (613
where uy is the Eulerian azimuthal velocity of the advective flow (which is pro-
vided, in the case analyzed here, by expression (5.5), while the radial velocity is
equal to zero), R and O are respectively theradial and azimuthal components of the
impurity positionin polar plane, dR/dt and R(d®/dt) areitsradial and azimuthal
velocities.
A trgjectory in phase spaceis given by the time evolution of the vector

(R, 00, 50, 2 0),

which at fixed time identifies the position of an impurity in phase space.

102

<



The projections of theimpurity trajectorieson the plane <R, i—f) have partic-

ular importance, sinceimpuritiestend alwaysto circle around the vortex centre, but
are captured by (or gjected out of) vortex coreswith different strenghtsfor different
values of the governing parameters. In particular, | am interested in exploring the
role of the Stokes parameter and the Rossby number in the process of capture of
impurities by avortex.

5.3.1 Captureof light impuritiesin non-rotating systems

If the density ratio § isfixed, a simple analysis of the radial component (5.13) of
the equation of motion for impurities (without the Coriolisforce and the lift term),
isuseful to give aqualitative picture of the dynamics.

Thefirst term in the r.h.s. of equation (5.13) gives always a centrifugal con-
tribution, whereas the second term is always centripetal. The third term (which
includes the Stokes parameter) gives a centrifugal contribution if the impurity ap-
proachesthevortex centre or acentripetal oneif it isdirected outwards, thelarger is
~, the bigger the contribution. If we consider, for instance, alight impurity outside
a Gaussian vortex, starting at the periphery of the circulation cell with the same ve-
lacity asthe Eulerian velacity (thus, only azimuthal), theinitial contributionisonly

given by ( - %A) /R, which is negative, thus centripetal. As time goes on, the

dR . . .
term —7—R increases (as absolute value), while theterm u3/ R becomes bigger as

R decreases, up to themaximum at R = 0.71. If v issmall, the latter contribution,
which is centripetal, may become prevalent and the impurity is easily captured by
the vortex in a short time scale, with a nonnegligible centripetal acceleration. For
large v, theinitial centripetal acceleration isimmediately compensated by the cen-

trifugal contribution given by —y 62—1: and the time scale of the fall of the impurity

inside the vortex becomes very large.
More quantitatively, in figure 5.5, as an example, | plot the projections on the

and a parti cfléwith v = 20; theinitial positionsin phase space are given by the set

dR dO© ug (1.75) : L
<R, o, g %> = <1.75, 0,0,1775>, corresponding to a position inpolar
plane at the pheriphery of the circulation cell (see figure 5.2). The trgjectoriesin
phase space are obtained as numerical solutions (for a total nondimensional time
T = 10) of the system given by the equation for the radial component (5.13) and
the corresponding equation for the azimuthal component of the impurity accelera-
tionin anon-rotating reference frame.

plane <R d—R> of the tragjectories in phase space for alight particle withy = 5

Theinitial smaller centrifugal contribution given by the term —+ ak withy =

5 alows the impurity to reach larger, negative radial velocity and to be strongly
captured in a short time; during the same time, the light particle with y = 20 does
not go further than R = 1.6.
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Figure 5.5: Trajectories on the plane (R, %) of alight particle (§ = 1.2) withy = 5 and of a
particle with ¥ = 20 for a Gaussian vortex with {, = 40 (equation (5.5)). Theinitial positionsin
dR d© ug (1.75)
Tde dt 1.75
position in polar plane at the pheriphery of the circulation cell, out of the coherent structure (see also
figure5.2). Thesolid lineisfor theimpurity with ¥ = 5 while thedashedlineisfor thecasey = 20.
Thetrgjectories in phase space are numerically computed for atotal nondimensional timeT" = 10.

phase space are given by the set (R,G) ) = [ 1.75,0,0, , corresponding to a

Analogous results are obtained by using expression (5.7) for the Eulerian az-
imuthal velocity (Gaussian vortex with single-signed vorticity). The only differ-
ence is that, in this case, also large Stokes parameters allow light impurity to be
captured in a shorter time scale (since initial azimuthal velocity is larger in the
sameinitial, radial position) or, equivalently, thelong tail of the azimuthal velocity
allow light impurities with large v to be captured even very far from the vortex
core.

The same analysis performed for the capture of light impuritiesinside a vortex
can be repeated for heavy particles outside a vortex core; in this latter case, the
gjection of heavy impuritiesout of the circulation cellsisfavoured for small values
of the Stokes parameter.

5.3.2 Capture of light and heavy impurities induced by the Coriolis
force

In arotating reference frame, two new terms appear in the radial component of the

. . . A d o . .
impurity acceleration, namely ?Ro‘le—(;), which gives a centrifugal contribu-
tion in a cyclone and a centripetal one in an anticyclone, and —A Ro~1ug which

gives a contrary contribution. In the case in which § « 1, as pointed out by Tanga
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et a. (1996), the only new important term is the former, which favoursthe capture
of very heavy particles by anticyclonic vortices; if 6 >> 1, the latter term favours
the capture of very light impuritiesin cyclones. In al the intermediate cases, the
equilibrium among the different terms in equation (5.13) determines the capture
or expulsion of impurities, depending on the parameters. | will discuss here the
role of the Rossby number in the process of capture of impuritiesin cyclones and
anticyclones, if § and v are fixed.

To do that, | show in figures 5.6 and 5.7 the projections on the plane <R, i—f)

of thetragjectoriesin phase spacefor alight particle (6 = 1.2,y = 5) with Ro = 0.1
or Ro = 0.02, which starts outside a cyclonic Gaussian vortex with ¢y = 10, and
an heavy impurity (§ = 0.8, v = 5) which starts outside an anticyclonic vortex
(theinitial positionsin phase space are the same as in the non-rotating case). As
one can seein figure 5.6 for the case of light impuritiesin a cyclone, the particles
are captured by the vortex both if the rotation of the system isstrong (Ro = 0.02)
andif itisweaker (Ro = 0.1); anyway, aweak rotation favours the capture of light
impuritiesin cyclonic vortices, since the initial damped oscillations in the radial

velocity for the case with Ro = 0.02 (strong rotation) lead to asmaller velocity for
the fall inside the vortex, thusto alonger capture time scale.

0.1 T T T T T T T T i

-0.1

-0.2

dR/dt

-0.5 | | | | | | | |

Figure 5.6: Trajectoriesonthe plane (R, %) of alight particle (§ = 1.2, ¥ = 5) with Ro = 0.1
(solid line) and of aparticle with Ro = 0.02 (dashed line) for the same cyclonic Gaussian vortex of

figure5.5. Theinitia positionsin phasespacearethe sameasin figure5.5. Thetotal nondimensional
time of the computation of the trajectoriesin phase spaceis T = 10.

Thesituation changesfor the case of heavy impuritiesin an anticyclonic vortex:
astrong rotation (Ro = 0.02) leadsto thefast capture of the heavy impurity, which
reaches the center of the anticyclone in afinitetime. On the contrary, in the case of
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Figure 5.7: Sameasin figure 5.6, but for an heavy impurity (6 = 0.8, ¥ = 5) in an anticyclonic
Gaussianvortex. The solid lineisfor the casewith Ro = 0.1, the dashed lineisfor Ro = 0.02

weaker rotation (Ro = 0.1), the particleisinitialy attracted into the anticycloneup
to adistance from the centre R = 0.5, but it isthen expelled out of the vortex core,
as the results given by the linear stability analysis predict. The heavy impurity is
then attracted toward an equilibrium distance far from the vortex centre in which
the centripetal and centrifugal forces equilibrate.

This situation corresponds in phase space to a limit cycle, described by the

condition
dR dO . Ug (Req)
(ro, %, dt)—(Req,e,o, ). (514)

where R, is the equilibrium distance far from the anticyclonic centre. The ex-
pression for R., is easily found by inserting in equation (5.13) the values which
describes the limit cycle in phase space and by using the expression (5.5) for the
azimuthal velacity. Thisyields:

Reg=4/—In <— 1;‘;:) (5.15)

Itisclear that thereisan equilibrium distance only for an anticyclonic vortex (1o <
0), when Ro > —1/2¢y. Thisis perfectly in accordance with the fact that for
Ro > —1/24y the anticyclonic centre is an unstable point for heavy particles,
while these ones are anyhow attracted into the vortex, if they start outside.

The closed orhit in phase space, described by vector (5.14), isa stable attractor
for heavy impuritiesin anticyclones. In the limit Ro — oo, thusin a non-rotating
reference frame, one recoversthe result found above: heavy impuritiesdo not enter
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any vortex, neither cyclonic nor anticyclonic, since the resulting equilibrium dis-
tance is infinite. Furthermore, since the expression for R, does not depend on 6,
itisalso validfor light particlesin anticyclones. Inthiscase, R, isan equilibrium
distance at which centrifugal and centripetal forces cancel out, but it is not an at-
tractor orbit in phase space: if R < R.4, infact, light particles are attracted toward
the centre of the anticyclone (as seen by using linear stability analysis) and for
R > R., they are gected out of the vortex. In thelimit Ro — oo, light impurities
are attracted into a cyclonic vortex from infinity.

Note also that expression (5.15) does not depend on the Stokes parameter, thus
the equilibrium distanceisthe same for different sizes of the impuritiesor different
Reynolds numbers.

5.3.3 Theroleof thelift force

The introduction of lift force, written in polar coordinates for a Gaussian vortex,

yieldsanew term in equation (5.13) for the radial component of the impurity accel-

eration: % <R§ - u9> ¢. Thisterm leadsto centrifugal or centripetal contribu-

tionsto the radial acceleration which are formally similar to that produced by the
Corialisterm. Indeed, the importance of the lift term contribution is greater where
vorticity is larger, thus more inside vortex core than outside. Therefore, lift force
does not change substantially the dynamics of capture of impurities by vorticesin
arotating system.

Also the expression for the equilibrium distance R., is not modified by the
presence of the lift term, sincein alimit cycle described by condition (5.14), this
term vanishes. The only remarkable effect concerns the dynamical behaviour of
heavy impurities which enter an anticyclonic core when the Rossby number is
small: trajectoriesin theplane (R, dR/dt) reach acertain distance from the centre,
then they make for outwards, but no equilibrium distance is present in the system,
and finally the centripetal contribution becomes predominant and the particle falls
towardsthe vortex centre (see figure 5.8).

107



4 T T T T T T T T
//»\\
{ N\
3 - N i
1 \
| Y
2 F Y —
I \
| \
i
1F i AN -
| [ |
i o
0 L .
5 T
= ! R
ad oA
e} L ! -
-1 ! L !
| \ /
i N
2R -
i ,
I L
| 7’
3k p .
l‘ //
| .
-4 \\\ Vil n
\ yid
\ -
S 1 1 1 1 1 1
-5 =
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Figure 5.8: Sameasin figure 5.7, with the addition of the lift term. The solid line is for the case
with Ro = 0.1 and the dashed line correspondsto Ro = 0.03
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Chapter 6

Dynamics of impuritiesin
barotropic turbulence

Thedynamicsof impuritiesisnumerically studiedin abarotropic, two-dimensional
fluid model, and the contributions given by the different terms in the equation of
motion are separately taken into account. The results obtained in analytical, sta-
tionary flows are used to explain the behavioursof light and heavy impuritieswhen
the turbulent flow is dominated by coherent vortices.
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6.1 Impurities advected by a two-dimensional turbulent
flow

The results on impurity dynamics obtained in previous chapter by using simple,
analytical vortex models, are precious to explain most of the dynamics of light
and heavy particles in more complex, vortex-dominated turbulent flows, such as
barotropic ones.

One of the most relevant differences between coherent vortices in barotropic
turbulence and the Gaussian vortex model is that "real” vortices may have radial
velocity (since they are not perfectly circular). Another difference is the fact that
coherent vortices are not isolated and interact with each other; dynamics of impuri-
ties during vortex-vortex interactions (straining, coupling and merging processes)
has not been taken into account in the previous chapter.

In the following, | will consider the impurity dynamics in a two-dimensional
advecting turbulent flow, whose dynamics has been widely discussed previously.
Resultsin aquasi-geostrophicor shallow-water approximation depend more onthe
different dynamics of the advecting flow itself, than on the dynamical behaviour of
impuritiesin the presence of vortices.

Thedynamics of light and heavy particles (aswell asthe dynamics of neutrally
buoyant tracers in the next chapter) in 2D turbulence is studied by means of nu-
merical simulations, whose set-up is described in chapter 4. The impuritieshave a
density difference no larger than 25% with respect to the fluid: | use é = 1.2 for
light particles (less dense than the fluid) and 6 = 0.8 for heavy particles (denser
than the fluid).

6.2 Dynamics of impuritiesin non-rotating
referenceframes

In order to analyze separately in section 6.3 the effects on the impurity dynamics
introduced by the Coriolisforce in arotating reference frame, | deal in this section
with the simpler case in a non-rotating system, by using the following nondimen-
sional equation of motion:

d*X Du dX 1. du
v AE‘”’(E‘“) T30 (6-2)

27 dt’

Figure 6.1 show typical trgjectories of, respectively, a light impurity and an
heavy impurity initialy placed inside the core of an anticyclonic vortex. Impu-
rities less dense than the fluid are attracted by vortex centres and undergo spiral
trajectories around and toward them, whereas heavy impurities undergo spiral tra-
jectories outwards, leaving the vortex cores devoid of particles.

Theresult at late times is a nonhomogeneous distribution of particles through-
out the turbulent field, with high concentrationsof light particles and lack of heavy
particles inside vortices, as one can see in figure 6.2, which shows the distribution
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of 4096 light impurities (panel a) and heavy impurities (panel b) withy = 5 in the
turbulent field at time ¢ = 33 (depicted in figure 1.3).

200 ! ! ! ! !

-600 T T T T T T T
0 100 200 300 400 500 600 700 800

X

Figure 6.1: Typical trajectories of alight impurity with § = 1.2, ¥ = 5 (solid line) and a heavy
impurity with § = 0.8, v = 5 (dotted line) inside the core of a(cyclonic) coherent vortex. Theinitial
velocities are the Eulerian velocities at the corresponding initial positions. In figure, units are the
grid points; one hasto multiply by 27 /512 in order to have radiants.

Atfixed §, moreover, the capture time of light particles (namely, the time taken
to reach the vortex centre, starting insidethe core) and the expulsion time of heavy
particles (namely, the time taken to leave the vortex core, starting close to the cen-
tre) depend on the value of the Stokes parameter v, as figure 6.3 shows. In this
figure, the capture time for light impurities (solid line) is evaluated by using the
mean time taken by twelve particles with § = 1.2 and different 4 to reach a dis-
tance from the centre of an antyciclonic vortex corresponding to 80% of the maxi-
mum vorticity, starting from a position from the centre that is associated with 10%
of the maximum vorticity, whereas the expulsion time (dashed line) is evaluated
for twelve particles with 6 = 0.8 that reach a distance far from the centre which
corresponds to 10% of the maximum vorticity, starting from a position around the
centre in which the vorticity is 80% of its maximum value. The anticyclonic vor-
tex that is used has awell definite, quasi-circular shape and does not interact much
with the others during the numerical experiments. Capture time and expulsiontime
curves show the same dependance from -, with a minimum around v = 20 and

asymptotic behavioursfor small and large « given respectively by l and v (seethe
Y
inset of figure 6.3 in logarithmic scale).
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Figure 6.2: Distributions of 4096 light impurities with § = 1.2, v = 5 (panel &) and 4096 heavy
impurities with § = 0.8, v = 5 (panel b) at time t; = 33. Theinitia distributions are uniform,
with initial velocities equal to the Eulerian velocities at the corresponding positions. In each panel
the isolines of the vorticity field are superimposed, showing the well developed coherent structures
(see aso figure 1.3b). Units are the grid points (one has to multiply by 27 /512 in order to convert
into radiants
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Figure 6.3: Inthisfigurethe continuous|ine representsthe mean capture time of 12 light impurities
(6 = 1.2) toward the center of an anticyclonic vortex versus v, whereas the dashed line represents
the mean expulsion time of 12 heavy impurities (§ = 0.8) out of the same anticyclonic vortex. The
chosen vortex has a well defined quasi-circular shape and does not interact much with the others.

The impurities are initially seeded equally spaced on a circle around the vortex center, with initial

velocities equal to Eulerian velocities. The procedure of evaluation of the capture and the expulsion
timesisdescribedin the text. In theinset, the scaleis logarithmic for the capture time curve, and the
dashed lines are proportional to 1/ and v.
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Figure 6.4: Time evolution of the fractional density d = (N/Niot)/ (A/Asot) = (N/A) -
(4n* /4096) of 4096 light impurities (§ = 1.2) in areas occupied by: (a) coherent vortices, (b)
circulation cells, (c) turbulent background. The different curves are for different valuesof 4 and for
Lagrangian particles. Theinitial conditionsfor impurities are the same asin figure 6.2. Areas occu-
pied by vortices are distinguished from the background by the values @ < 0 and vorticity ¢ > 5,
whereas circulation cells are distinguished either by @ > 20 or by @ > 0 and ¢ > 3. These choices
let avery good distinction among the three areas (vortices, circulation cells, background turbulence)
for these experiments.

All these properties are completely in accordance with the results given by the
linear stability analysis performed, in previous chapter, in the neighborhood of a
Gaussian vortex centre and confirm that the dynamics of impurities inside vortex
cores may be well explained by linear theory.

Vorticesin two-dimensional turbulence are anyhow complex structures and the
dynamics of impurities outside vortex cores can be explained only by referring
to nonlinear effects. If one looks at figure 6.4, which shows the time evolution
of the fractional density of light impuritiesd = (N/Nyot) / (A/Atet) = (N/A) -
(47w%/4096), where N is the number of impurities in the area A of the turbulent
field occupied by vortex cores (panel a), by circulation cells (panel b) or by the
turbulent background (panel c), and defined by using the Okubo-Weiss criterion,
two properties are evident:

1. light particlestend to concentrate inside vortex cores also at late times, com-
ing from the turbulent background (the density in circulation cells, in fact,
diminuishes such as in the background) and disregarding the barrier con-
stituted by the strong vorticity gradients at the edge of vortex cores, unlike
Lagrangian particles;

2. the concentration of light particlesinside vortex cores depends inversely on
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Figure 6.5: Time evolution of the fractional density d = (N/Niot)/ (A/Asot) = (N/A) -
(47* /4096) of 4096 heavy impurities (6 = 0.8) in areas occupied by: (a) coherent vortices, (b)
circulation cells, (c) turbulent background. The different curves are for different valuesof 4 and for
Lagrangian particles. Theinitial conditionsfor particles are the same asin figure 6.2. The criterion
to distinguish vortices and cells from the backgroundis the same asin figure 6.4.

v: small values of the Stokes parameter favour the capture by vortices of
light impurities moving in the background.

The effect of these properties is that, if on the one hand it might be possible to
observe light particles with large v very close to the centre of vortices already at
short times, on the other hand one observes fewer light impurities inside coherent
vorticesif v islarge, also at latetimes. The latter effect cannot be explained neither
with alinear theory, nor with the simple argument that, for very large v, the most
important term in the equation (6.1) isthe difference dX /dt — u and theimpurities
move as Lagrangian particles, which is not valid for intermediate Stokes parame-
ters. The explanation of this effect is given by the analysis of the trajectories of
light impurities with different + in the phase space, performed in previous chap-
ter: the smaller net centripetal force which characterizes light particles with large
Stokes parameters at the pheriphery of coherent structuresmay easily be contrasted
by the background turbulence, allowing such impurities not to be captured.

The same consideration may be repeated for heavy impurities outside a vortex
core: in this case, the expulsion of such impurities out of the circulation cellsis
favoured for small values of the Stokes parameter, and the result in the different
partitions of the two-dimensional turbulent field can be seen in figure 6.5, where |
plot the fractional density versustime for heavy impuritieswith different +.
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6.3 Theeffectsof the Coriolisforce

. . - A dX . .
The introduction of the Coriolisterm — ?Ro—lz X i 5u> in the equation

for impuritiesin a rotating reference frame changes deeply the dynamics, leading
to an asymmetry cyclone-anticyclone with respect to the capture or expulsion of
light and heavy impurities by vortices, as predicted in previous chapter for the case
of a Gaussian vortex.
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Figure 6.6: Distributions of 4096 heavy impurities (6 = 0.8) and light impurities (6 = 1.2) with
different values of Rossby number and ¥ = 5 in aturbulent field: (@) § = 1.2, Ro = 0.1, (b)
§ = 1.2, Ro = 0.02,(c) § = 0.8, Ro = 0.1, (d) § = 0.8, Ro = 0.02. These distributions
are given a t = 33 and the initial distributions are uniform, with initial velocities equal to the
Eulerian velocities at the corresponding positions. In each panel theisolines of the vorticity field are
superimposed. Units are the grid points.

The results discussed so far alow to explain the details of the dynamics of
light and heavy impurities in the two-dimensional, rotating system described by
equation (4.4), without considering the lift term. | have performed numerical ex-
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Figure 6.7: Trajectories of alight impurity with § = 1.2, ¥ = 5 (panel &) and an heavy impurity
with § = 0.8, v = 5 (panel b) inside the core of the same anticyclonic vortex. The solid lines are
for Ro = 0.1 and the dashed lines are for the case with Ro = 0.02. The initia velocities are the
Eulerian velocities at the corresponding initial positions.

periments by using 4096 light impurities (6 = 1.2) and heavy impurities (6 = 0.8)
with a fixed ¥ = 5 and Rossby numbers Ro = 0.1, 0.02. The distributions of
impuritiesin the turbulent field at timet = 33 (figure 6.6) reflect the analytical and
numerical results obtained in the stationary case by using an isolated vortex: in
general, light impurities concentrate inside cyclonic vortices and are expelled out
of anticyclonic ones, and the contrary happens for heavy impurities.

By looking at details, for the case with Ro = 0.1 one can appreciate that there
are some light particles very close to the center of anticyclonic vortices whereas
there are no heavy particles very close to these centers; this apparent paradox is
well explained by the fact that the anticyclones are characterized by the critical
value Ro = —2/(, and that for Ro > —2/(, the anticyclonic centers become
unstable for heavy particlesand stablefor light ones. Therefore, impuritiesthat are
seeded initially inside anticyclonic coreswith avorticity in the centre that is greater
than 20, for the case with Ro = 0.1, undergo typical centerward (light particles) or
outward trajectories (heavy particles) asfigure 6.7 shows.

This behaviour inside anticyclonic vorticesis also confirmed by the mean cap-
turetime plotted for 12 heavy impuritiesin figure 6.8a, for different Stokes param-
eters and Rossby numbers; it is evident that for Ro ~ 0.06 the capture time has a
strong growth for all the values of +, which is compatible with the critical value of
the Rossby number for the anticyclonic vortex used in this experiment, which has
amean vorticity in the centre {, ~ —38 (the mean is calculated for the temporal
range 20 < t < 33). Also the presence of the minima in the capture time plot
for heavy impurities and for light ones (in figure 6.8b) is predicted by the linear
stability analysis around the vortex centre, as shown by Re 7 infigure 5.4.
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Figure 6.8: Panel (a) of thisfigureis the capture time towardsthe center of an anticyclonic vortex
for heavy impurities, as function of 4 and the Rossby number. The chosen vortex isthe sameasin
figure 6.3, aswell asthetime evaluation procedure. Panel (b) representsthe capture time towards the
center of acyclonic vortex versus~ and the Rossby number for light impurities. In this latter case,
the chosen cyclonic vortex does not interact much with the others, and the time eval uation procedure
isthesameasin panel (a).
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Figure 6.9: Time evolution of the fractional density d = (N/Niot)/ (A/Asot) = (N/A) -
(47* /4096) of 4096 light impurities (§ = 1.2) with ¥ = 5 in areas occupied by: (a) coherent
cyclone and anticyclone vortices, (b) cyclone and anticyclone circulation cells, (¢) turbulent back-
ground. Theinitia impurities distribution is uniform and the initial velocities are equal to the Eu-
lerian velocities. Areas occupied by vortices are distinguished from the background by the values
Q@ < 0 and vorticity ¢ > 5, whereas circulation cells are distinguished either by @ > 20 or by
Q@ > 0 and¢ > 3. Cyclonesand anticyclones are distinguished by the positive or negative value of
vorticity.

The fact that a slow rotation of the reference frame favours the capture of
light impuritiesinside cyclonic vortices and of heavy impuritiesinsideanticyclonic
ones, as seen by using the analytical model of the Gaussian vortex, showsits fin-
gerprint in two-dimensional turbulence, as the fractional density of light and heavy
particles inside cyclones and anticyclones points out in figures 6.9 and 6.10. Cy-
clones always attract light impurities coming from the turbulent background, but a
larger density is reached when Ro = 0.1 with respect to the case with Ro = 0.02
(in the former case, the density is three times than that in the latter case). The
anal ogous situation occurs for heavy impuritiesin anticyclones, except that anticy-
clonic coresarerepulsivefor Ro > —2/(,. Thissituation leads to concentration of
heavy particleswith Ro = 0.1 on stable orbits at a certain distance from the centre
of anticyclonic vortices, asitisclear if looking at figure 6.6¢. The fingerprint of the
limit cycle is aso given by the oscillations of the density of heavy particles with
Ro = 0.1 in anticyclonic cores and circulation cellsin figure 6.10.

Dueto thefact that coherent structuresin barotropic turbulence are neither per-
fectly circular nor isolated, we cannot speak about an unique equilibrium distance,
but rather about a narrow equilibrium range, whose mean value can be evaluated
by using expression (5.15). In the case of the quasi-isolated anticyclonic vortex al-
ready mentioned and used for the determination of the capture and expulsiontimes,
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Figure 6.10: Time evolution of thefractional density of 4096 heavy impurities (§ = 0.8) withy =
5 in areas occupied by: (a) coherent cyclone and anticyclone vortices, (b) cyclone and anticyclone
circulation cells, (c) turbulent background.

in figure 6.11al plot the distribution of heavy impuritieswith Ro = 0.1 at time
t = 33, where the presence of an attractive line for the particle is evident.

It is convenient to use a reference frame centred in the vortex centre, in order
to evaluate the radial distance and the radial velocity of the impurities. By plotting

the projection on the plane | R, 62—1: of the positions in phase space for heavy

impurities (figure 6.11b), it can be seen that the stable attractor, whose projection
is represented by a simple point in the Gaussian vortex model, is here more com-
plicated, due to the presence of nonnegligibleradial velocitiesin the Eulerian field
induced by the barotropic vortex. Anyhow, an equilibrium range is recognizable
for 11.72 < R < 14.72 grid points, with amean value R = 13.35 grid points and
astandard deviation o5 = 0.79 grid points (calculated for al the impuritieswhich
lies on the attractor). If we scale the distance from the centre, by using a length
scale given by the mean value (with respect to the azimuthal angle) of the scales
Lo = V2R lg=0, Where R |g—o is the distance of the edge of the vortex core (at
which the Q-valueis zero), the nondimensional range is0.67 < R’ < 0.84 and the
mean value becomes R’ = 0.76, with a standard deviation ogr = 0.04. By using
the analytical expression (5.15) with the mean value (o, ~ —38 for the vorticity
in the centre of the anticyclonic vortex, it comes out that R., ~ 0.80, which is
compatible with the mean value of the equilibrium range.

Similar results are obtained by using heavy particleswithy = 10, athough the
attractor changes slightly its form (see figure 6.12). Nevertheless, the equilibrium
range does not change alot, confirming itsindependence of it from the value of the
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Figure 6.11: Panel (a): positions (in grid points) occupied at time ¢ = 33 by heavy impurities
withd = 0.8, ¥ = 5 and Ro = 0.1 in aanticyclonic vortex with the centre in (387,298) grid points.
By using a reference frame centered in this position, panel (b) shows the projection on the plane

(R, %) of the positions occupied by the impurities in phase space, where an attractor is shown to
concentratethe particlesin the equilibrium range 11.72 < R < 14.72 grid points.
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Figure 6.12: Plot of the projection on the plane (R, %) of the positions occupied by heavy

impurities with ¥ = 10 in phase space. The attractor is very similar to the one represented in
figure 6.11b, aswell asthe equilibrium range 11.72 < R < 14.72 grid points.

Stokes parameter, as predicted by equation (5.15).

6.3.1 Theroleof thelift force

It has been verified with the Gaussian vortex model that lift force does not change
significantly the dynamics of impurities, except for some effects inside the anticy-
clonic cores, where the vorticity is larger. These effect are strictly limited to the
cores, and no significant variations in the impurity densities inside cores and cir-
culation cells can be appreciated. Not even the distributions of impuritiesin the
turbulent field change with respect to the case wihout the lift term.
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Chapter 7

The case of neutrally buoyant
tracerswith finite size

This chapter is devoted to the analysis of the dynamics of rea tracers, neutrally
buoyant but with finite size. It is pointed out that inertia can play an important
role in the dynamics of such tracers, generating significant differences with respect
to the dynamics of ideal fluid particles, and possibly introducing biasses in the
Lagrangian statistics.
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7.1 Floats, balloonsand laboratory tracers

In experimental fluid dynamics, tracers are fundamental elements for the study
of Lagrangian properties of a flow, as well as for the possible reconstruction of
Eulerian velocity fields.

In laboratory experiments, microscopic particles are used to study the trans-
port and dispersion properties of a turbulent flow or to get velocity information
over a small portion of the fluid (Particle Image Vel ocimetry); in-situ experiments
use floats and drifters in oceans and isopycnal balloonsin atmosphere in order to
reconstruct the dynamics of geophysical flows.

Inal the examples above, tracersthat are used are assimilated to fluid elements
and their dynamics is considered "Lagrangian”, i.e., their equation of motion is
smply given by dX/dt = u, where u is the advecting Eulerian velocity. Fluid
elements, however, are point-like particles, whereas real tracers have finite size.
Also if they are perfectly neutral buoyants, because of their finite size (although
small with respect to the flow length scale), their dynamicsis rigorously described
by the equation of motion for impurities (4.4), in which one hasto put § = 1.

In this context, the dynamics of real tracers and, more in general, the dynam-
ics of neutral buoyants with finite size, may be different from the fluid element
dynamics, and possible biassed estimates of Lagrangian statistics may thus be in-
troduced when data coming from tracers in laboratory or in-situ experiments are
used. Furthermore, these data may lead to a misleading reconstruction of the Eu-
lerian characteristics of aflow, which isadded to the intrinsic difficulty to link the
L agrangian and Eul erian descriptionsdue to the chaotic advection which is present
also in very simple flows (Aref 1984, Aref & Balachandar 1986, Falcioni et al.
1988).

In this chapter, | discussthe dynamics of neutrally buoyant particles (6 = 1),
advected by vortex-dominated flows. | will show as, also for neutrally buoyant
tracers, the presence of vortices modifies the dynamics and the overall transport
properties. First of al, the dynamics in a Gaussian vortex model is considered,
afterwards the dynamicsin two-dimensional turbulence will be discussed. Possible
biassesin the statisticswith respect to Lagrangian particleswill befinally takeninto
account.

7.2 Dynamics of finite-sizetracersin a Gaussian vortex

When the density ratio 6 = 1 is used into equation (4.4), the equation of motion
reduces to:

X 2Du (4% ) 1
az — 3Dt ' \dt 3dt
> dxX 1 /dX
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. . L\? .
wherethe Stokesparameter isnow simply v = 3 <—> Re™ . If wefollow Crisanti
a

et a. (1990) and we confuse the derivative d/dt with the material derivative
D/ Dt, this equation in a non-rotating system simply reduces to the equation for
Lagrangian particles with the addition of a damping perturbation term, depend-
ing on v. A correct approach to the problem, however, cannot confuse these two
derivatives, which are formally different.

If one performs a linear stability analysis of equation of maotion (7.1) in the
neighborhood of a Gaussian vortex centre, the result isthat the centreisaneutrally
stable point (the real parts of eigenvaluesare zero). This meansthat tracers with fi-
nite size which have the same initial velocity as thefluid, are perfectly Lagrangian.
Babiano et a. (2000), however, have shown in a simple cellular flow that, also
for very small initial relative velocity with respect to the fluid, tracers trajectories
diverge from fluid trgjectories during a transient time whose duration is related to
the value of the Stokes parameter. This difference is enhanced in the areas of the
flow where the Okubo-Weiss function is strongly positive (hyperbolic points); ar-
eas where the Q-value is small or negative (elliptic points) are, on the contrary,
attractors for particles with § = 1, whose trgjectories can there converge to fluid
trajectories.

Usually, tracers are seeded into a fluid with zero initial velocity, both in labo-
ratory and in-situ experiments; it is very difficult to release tracers with the same
velocity as the flow. Therefore, an initial transient, whose duration depends on
the value of the Stokes parameter, is always present. During thistransient, tracers
can be attracted towards the centre of a vortex and be captured by the coherent
structure, unlike Lagrangian particles.

Thiseffect isclear in figure 7.1, which showsthe tragjectories (in the Cartesian
plane) of atracer seeded at rest in aGaussian vortex intheposition (R, ©) = (1, 0),
corresponding to the circulation cell (high positive Q-value). Different panels are
for the case without Coriolis force or for a cyclonic and an anticyclonic vortex in
arotating reference frame. Infigure 7.2, then, | plot the corresponding projections
on the plane (R, dR/dt) of the trajectoriesin phase space. In al the figures, it is
evident that an attractor is present in the system, since all the trgjectories in phase
space converge in a point, which correspondsto alimit cyclein the Cartesian plane.
The transient during which the tracer falls towards the attractor depends on the
value of v (see the different lengths of the spirals in phase space in figure 7.2a).
Furthermore, the Coriolis term introduces a cyclone-anticyclone asymmetry also
in the case of finite-size tracers, but only when rotation is strong (Ro = 0.02):
in this case, the cyclone is attractive whereas the anticyclone is sightly repulsive
(note also the waving trajectoriesin the Cartesian plane in figure 7.1b-c).

It is easy to explain this asymmetry. The radial component of the equation of
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motion (7.1) for a Gaussian vortex, simply reads:

d’R 1 do\? 2 dR 2 _ _, do 1 do
ﬁ = E [<R5> — Ug —’)/——|—§RO <RE—’U,9>—|—§ <RE—’U,9> C,
(7.2)

If thetracer is seeded at rest, theradial acceleration at initial timeis given by:

2 2
clej(t =0)= —% - ;Ro_luo - %uoc, (7.3)
which is aways centripetal for a cyclonic vortex, but may be centrifugal for an
anticyclone (ug < 0) if the Rossby number is enough small. The initia distance
R qp1e a which the contribution is neither centripetal nor centrifugal, for a given
vortex and a given Rossby number, may be easily calculated from equation (7.3),
by comparing to zero the r.h.s. and considering the expressions for the Gaussian
vortex azimuthal velocity and vorticity. Without the lift term, it is possible to get
out an analytical expression:

Rtable = \/ —In <— 1?;;)1 >, (7.4)

whichisvalid only for anticycloneswhen Ro > 1/3|v¢|. For agiven Rossby num-
ber, initial positions at distances further than R 4,11 |€ad to expulsion, otherwise
the tracer is captured. For Ro — 1/3|vo|, Rstanie — 0, then anticyclones gject
tracers from any initial position.

7.3 Finite-sizetracersin two-dimensional turbulence

Also for the case of finite-size, neutrally buoyant tracers, the results obtained by
using an analytical vortex model |ead to explanation of their dynamicsinacomplex
flow such as the two-dimensional turbulent flow.

| have performed numerical simulations by using an uniform distribution of
4096 particles with § = 1 in the same way as described in the previous chap-
ters. Tracers with initial velocity equal to the flow velocity do not display any
remarkable difference with respect to Lagrangian particles, whereas differences
are evident when tracers are seeded at rest. In thislatter case, vortex cores attract
tracers during a transient whose duration depend on the value of the Stokes param-
eter; tracers which start close to vortex cores (i.e., in the surrounding circulation
cells), disregard the barrier constituted by the strong vorticity gradient at the edge
of vortices and enter the cores, unlike Lagrangian particles. This happens both
in a non-rotating system and in the case of cyclonic vortices in a rotating refer-
ence frame. For anticyclonic vortices, attraction or removal depends on the Rossby
number: strong rotation (Ro = 0.02) favours the removal of tracers from circu-
lation cells. All these results are perfectly in accordance with the ones found by
using the Gaussian vortex model.
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Figure 7.3: Trajectories of afinite-size tracer (solid line) and a Lagrangian particle (dotted line)
starting at the same initial position in the circulation cell of an anticyclonic vortex, for the case
without Coriolisforce. In figure, units are grid points (in order to have radiants, one has to multiply
by 27/512).

Figures 7.3 show the trgjectories of a finite-size tracer (solid ling) and a La-
grangian particle (dotted line) starting at the same initial positionin the circulation
cell of an anticyclonic vortex for the case without Coriolis force. The divergence
of thetwo trgjectoriesis evident: the Lagrangian particle spreads into the turbulent
background, whereas the tracer is captured by the vortex.

After the transient during which tracers may enter vortex cores, the distribution
of thesetracers in the turbulent field is inhomogeneous and does not reflect the one
of Lagrangian particles. Tracers accumulate in vortices, and thisfact may be quan-
tified by looking at the time series of the fractional density inside the vortex cores
and the circulation cells (see figure 7.4 for the non-rotating case and figure 7.5 for
therotating one). The accumulation is concentrated at early times, then the density
keeps roughly constant. The rotating case is particular significant, sinceit reflects
the result found by using the analytical model of the Gaussian vortex. Cyclones
are always attractive, whereas anticyclones are attractive when the Rossby number
islarge, repulsive whenitis small.

These results confirm that an initial uniform distribution of neutrally buoyant
tracers evolves towards a non-uniform asymptotic state in a time scale determined
by the value of the Stokes parameter. After this asymptotic state has been reached,
tracer dynamics is merely represented by the Lagrangian particles dynamics. If
the transient may be considered short in comparison with the duration of an ex-
periment employing neutrally buoyant tracers, nevertheless two important conse-
guences are evident: the first is that data provided by tracers cannot be assimilated
to Lagrangian data starting from their seeding, and the second is that after the tran-
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sient, the tracer distribution is inhomogeneous in the turbulent field. These two
factors can introduce some biasses in the statistics of real tracers with respect to
ideal fluid elements.
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Anexampleof thisfactisgiveninfigure 7.6a-b (for the non-rotating and thero-
tating case, respectively), where| plot the dispersion coefficient K (t) = A%(t)/2t,
where A% (t) isthe absolute dispersion, defined as:

22 = L 3 (o) = xi(t0) . (7.5)
N &

Lagrangian particles (dashed line in figure 7.6a-b) show a behaviour proportional
tot at small time, and an anomal ous diffusion with a behaviour proportional to ¢ 2/3
and t!/4 at intermediate time. On the contrary, tracers areinitially accelerated from
rest, therefore the dispersion coefficient is proportional to t2. When Lagrangian
particles show anomalous diffusion, neutrally buoyant tracers have a dispersion
coefficient that is proportional to ¢, thus they do not show anomalous diffusion at
the same time as for Lagrangian particles.

Thisis only one example of possible biasses in the statistics; other examples
include spectraor velocity PDF, if the ensemble of tracers considered comes from
areas in the flow where vortices are abundant, leading to inhomogeneous distribu-
tion of tracers at late times.
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Conclusions

Turbulencein rapidly rotating flowsis characterized by the spontaneousemergence
of long-lived coherent vortices. Examples in geophysical flows are the tropical
cyclones and the polar vortex in the atmosphere, meddiesin the Atlantic ocean and
ringsin the Gulf stream, great spotsin the atmospheres of outer planets (the Great
Red Spot of Jupiter or the Great Dark Spot of Neptune).

In past years, this problem has been extensively explored by the use of numer-
ical simulations. In particular, simulations have shown that the vortex cores are
characterized by strong impermeability to inward and outward fluxes of passive
tracers (“Lagrangian particles’, whose dynamics is assimilated to the dynamics of
fluid elements), and they are able to trap particlesfor long times.

In the first part of this thesis, | have discussed the results provided by some
experiments on large-scale, quasi two-dimensional, homogeneous and rapidly ro-
tating turbulent flows, performed in the rotating tank (diameter of 14 m) of the Lab-
oratoire des Ecoulements Géophysiques et Industriels (LEGI) in Grenoble, France.
With these experiments, we obtained alarge, high quality data set on the dynamics
of coherent vortices in a rapidly rotating barotropic fluid, which has been made
possible by the use of alarge-scale facility and the use of laser techniques for the
flow visualization. The use of amixed technique, experimental and numerical, has
allowed to obtain Lagrangian data and trajectories of passive tracers, which are
important to study the transport properties of tracers by coherent vortices.

The overall experimental results confirm many numerical results obtained by
previous studies: trapping of tracers for long times in vortex cores, impermeabil -
ity of vortices to inward fluxes, Lagrangian view of vortex merging etc. Differ-
ences have been found in the asymmetry cyclones-anticyclones, duetoinitial three-
dimensional effectsin laboratory experiments, and in thelack of strong strain areas
around vortex cores.

A second part of my work has been devoted to the study of the dynamics of
real particlesin vortex-dominated barotropic turbulence. Lagrangian particles and
fluid elements are considered as merely point-like and massless particles, but real
particles have finite size and finite inertia (“impurities’). An early study of theim-
purity dynamicsin asimple Gaussian vortex model has allowed to obtain analytical
results which can explain most of the dynamical behaviours of such impuritiesin
more complex flows, such as a barotropic turbulent flow.

In particular, the dynamics of impuritiesin rotating, vortex-dominated flowsis
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conditioned by the different influence of cyclonic and anticyclonic vortices: parti-
cleslighter or heavier than the fluid are captured or expelled by vortices according
to the vortex sign, vorticity and to the Rossby number of the rotating system, dis-
regarding the dynamical barriers at the edge of vortex cores, unlike Lagrangian
particles.

The special case of passive neutrally buoyant tracersis also taken into account:
floatsand driftersin the oceans, balloonsin the atmosphere and microscopic tracers
used in laboratory experiments have the same density as the fluid but finite size.
This differs their dynamics from the dynamics of Lagrangian particles and may
introduce biassesin the statistics when the Lagrangian data provided by finite-size
tracers are used and assimilated to data provided by fluid elements.
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