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Abstract - Sommario

This Ph.D. thesis discusses vortex dynamics and particle transport by coherent vor-
tices in homogeneous, rapidly rotating, turbulent fluids. The approach is both ex-
perimental and numerical. Applications to geophysical fluid dynamics are related
to the study of large-scale motions in the atmosphere and the oceans, where coher-
ent vortices are an important component of the dynamics. After a brief discussion
of the properties of barotropic turbulence and its relevance to geophysics, I con-
sider vortex dynamics in large-scale laboratory experiments. These are aimed at
studying the emergence and development of coherent vortices in a shallow layer
of homogeneous fluid in free decay, initially forced in order to create unstructured
turbulence. The Lagrangian aspects of these experiments are also pointed out,
and the transport of passive tracers in such a turbulent field with fully developed
coherent vortices is described. Tracer dynamics is studied by using both experi-
mental evidence and a mixed, experimental-numerical technique which allows to
obtain trajectories of individual tracers. The problem of the dynamics of real par-
ticles embedded in a fluid (impurities) is finally considered; ideal fluid particles
are point-like and massless, but real particles have finite size and their density may
differ from the density of the surrounding fluid. The dynamics of impurities is then
discussed by means of numerical simulations, both in simple stationary flows char-
acterized by the presence of vortex structures, and in barotropic turbulence with
fully-developed coherent vortices. Special attention is given to neutrally-buoyant
tracers, whose finite size may change the dynamical behaviour with respect to fluid
particles, in flows where vortices are an important component.

Questa tesi di dottorato tratta della dinamica di vortici e del trasporto di particelle
da parte di vortici coerenti in fluidi turbolenti, omogenei e rapidamente rotanti.
L’approccio è sia di tipo sperimentale che di tipo numerico, e le applicazioni
alla fluidodinamica geofisica sono in relazione allo studio dei moti a grande scala
nell’atmosfera e negli oceani, dove i vortici coerenti costituiscono un’importante
componente della dinamica. Dopo una breve discussione sulle proprietà della tur-
bolenza barotropica e sulla sua rilevanza in geofisica, mi occupo della dinamica
di vortici in esperimenti di laboratorio a grande scala, finalizzati allo studio della
nascita e sviluppo di vortici coerenti in uno strato sottile di fluido omogeneo in
decadimento libero, inizialmente forzato in maniera tale da creare una turbolenza
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non strutturata. Vengono anche illustrati gli aspetti Lagrangiani di tali esperimenti
e viene descritto il trasporto di traccianti passivi in un tale campo turbolento ca-
ratterizzato da vortici coerenti pienamente sviluppati, sia mediante risultati deri-
vati dagli esperimenti, sia mediante l’utilizzo di una tecnica mista sperimentale-
numerica, che permette di ottenere le traiettorie di traccianti individuali. Viene
infine preso in considerazione il problema della dinamica di particelle reali im-
merse in un fluido (impurità); le particelle di fluido ideali sono puntiformi e non
hanno massa, ma le particelle reali hanno una dimensione finita e la loro densità
può essere diversa da quella del fluido che le circonda. Viene dunque discussa
la dinamica delle impurità per mezzo di simulazioni numeriche effettuate sia in
semplici flussi stazionari caratterizzati dalla presenza di strutture vorticose, sia in
turbolenza barotropica con vortici coerenti pienamente sviluppati. Speciale atten-
zione viene posta al caso dei traccianti con la stessa densità del fluido, le cui dimen-
sioni finite possono modificare il comportamento dinamico rispetto alle particelle
di fluido, in flussi in cui i vortici sono una componente importante.
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Introduction

September 5th, 1996: hurricane ”Fran” slams into North Carolina’s southern coast
in USA, with sustained winds of approximately 190 km/h and gusts as high as
200 km/h. Flooding is a severe problem in the whole area hit by the hurricane
(see figure 1), which produces rainfall amounts of over 250 millimiters in parts
of eastern North Carolina and western Virginia. This hurricane, as the ones that
almost every year hit United States and Caribbean area, originated as a tropical
cyclone over the Atlantic Ocean and moved towards the mainland, where it finally
released all its large amount of energy and destructive power.

Such a phenomenon is an example of a coherent vortex structure in nature,
where the attribute ”coherent” points at the long lifetime and the well-definite shape

Figure 1: Hurrican ”Fran” viewed by a satellite image. It is possible to recognize the coast of
Florida (USA). Photo downloaded from the web site of the National Climatic Data Center (NCDC).
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Figure 2: The bright area in the image (taken by the satellite ERS by means of SAR technique) is
caused by an anticyclonic warm eddy in the Gulf of Tehuantepec, which is located at the Pacific coast
of Mexico. Photograph downloaded from the web site of the Institute of Oceanography in Hamburg.

of the vortex. Geophysical flows are characterized by the presence of strong vorti-
cal structures, which have fundamental importance for the overall transport of heat,
salt, moisture and particles both in oceans (see figure 2) and in atmospheres (not
only in Earth’s atmosphere, but also in the atmospheres of outer planets of Solar
System: figure 3 shows the well-known Jupiter’s Great Red Spot).

For these reasons, Geophysical Fluid Dynamics includes the study of vortex
dynamics and the associated transport properties as key issues for the understand-
ing of the dynamics of the oceans and the atmosphere, with the final purpose of
predicting, for instance, extreme events such as the one described above.

The last two decades have seen a large production of papers devoted to the
study of some approximations of the Navier-Stokes equations for Fluid Dynamics,
such as the barotropic quasi-geostrophic or the two-dimensional approximations;
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Figure 3: This Voyager 2 image shows the region of Jupiter extending from the equator to the
southern polar latitudes in the neighborhood of the Great Red Spot. Photo downloaded from the web
site of NASA.

this strong interest has been motivated by the fact that such approximations show
much of the phenomenology of the nonlinear dynamics that can be observed in
large-scale geophysical flows when rotation dominates.

One of these phenomena that are captured, for instance, by the two-dimensional
approximation of the Navier-Stokes equations is the development of coherent vor-
tices emerging from a turbulent, unstructured background. These flow structures
are shown to carry most of the energy of the turbulent system and to dominate the
dynamics of the flow at late times.

Coherent vortices show also peculiar characteristics with respect to the trans-
port of passive tracers in a turbulent field: numerical simulations show that vortices
are able to trap tracers for long times, much longer than the typical rotation time
scale inside the vortex (eddy turnover time), and are generally impermeable to in-
ward fluxes of particles. They are also areas of the flow where fluid particle motion
is regular, rather than chaotic as in unstructured turbulence.

These properties are strictly valid when considering point-like and massless
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fluid elements, more than particles with finite size and/or finite inertia with re-
spect to the fluid. In this latter case, the dynamical behaviour can be significantly
changed.

This Ph.D thesis adds a further piece to the puzzle of understanding vortex dy-
namics and transport of particles by coherent vortices in turbulent flows relevant
for Geophysical Fluid Dynamics. The approaches I have followed to this pur-
pose are both experimental and numerical: laboratory experiments on quasi two-
dimensional, large-scale turbulent flows and numerical simulations on the dynam-
ics of finite-size particles with inertia (”impurities”) are the main topics included
in this thesis, whose organization is the following:

� Chapter 1: in this chapter, the theory of barotropic turbulence is briefly sum-
marized. The governing equations of some approximations of the Navier-
Stokes equations are discussed, and the process of emergence and develop-
ment of coherent vortices is described.

� Chapter 2: large-scale laboratory experiments on the dynamics of long-
lived coherent vortices in rapidly rotating, barotropic flows in free decay are
presented and discussed.

� Chapter 3: A laboratory view on transport of passive tracers by coherent
vortices is the topic of this chapter: trapping of tracers and regular motions
inside vortex cores, impermeability of vortices to inward fluxes of particles
and merging of two vortices from the Lagrangian point of view are the phe-
nomena considered.

� Chapter 4: this chapter is devoted to introduce the equation of motion for
finite-size particles with inertia (”impurities”), whose dynamics can be very
different from the dynamics of fluid elements (”Lagrangian particles”).

� Chapter 5: the dynamics of impurities in simple, stationary, analytical vor-
tical flow models is the subject of this chapter.

� Chapter 6: the dynamics of impurities in barotropic two-dimensional tur-
bulence will be discussed, by using the results obtained in the analytical
vortical flow models.

� Chapter 7: the special case of the dynamics of tracers with finite-size and
the same density as the surrounding fluid is considered and bias ses with
respect to Lagrangian particles statistics are pointed out.
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Chapter 1

Barotropic turbulence

In this chapter, the theory of barotropic turbulence is briefly summarized, for the
case of an homogeneous and incompressible Newtonian fluid. This fundamental
hypothesis is assumed throughout this thesis. The governing equations of barotropic
quasi-geostrophic turbulence and two-dimensional turbulence are discussed and
the process of emergence and development of coherent vortices is described, from
both a numerical and an experimental viewpoint. Applications to geophysical fluid
dynamics are also mentioned.
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1.1 Basic concepts of fluid dynamics

The starting point in the study of fluid dynamics is provided by the continuum
assumption, which allows to use continuity and derivability for the variables by
which a fluid is described: density, pressure, velocity, temperature, etc. Two ap-
proaches are possible to describe such a fluid; in the Eulerian approach, a generic
variable F depends on time and on the position vector r = (x; y; z), thus in every
point of space, a value F = F (r; t) may be associated at a certain time t. In the
Lagrangian description of the fluid, the generic variable F is associated with the
motion of every fluid element, thus it depends on time and on the position of the
fluid element at the initial time: F = F (r0; t); in particular, the vector r = r(r0; t)

describes the trajectory of a fluid element. The link between the two approaches
can be found in the definition of the total time derivative of a generic Eulerian vari-
able F of the fluid, given by the material derivative following the motion of a fluid
element:

DF

Dt
=
@F

@t
+ (u � r)F; (1.1)

where u(r; t) = (u; v; w) is the velocity vector and r is the gradient operator.
The material derivative performs the task of representing an essentially Lagrangian
concept, in an Eulerian language.

By using such an Eulerian approach, the dynamics of an homogeneous, in-
compressible, Newtonian fluid moving in a steadily rotating reference frame can
be described. Such a flow is governed by the Navier-Stokes equation, describing
the balance of momentum, and by the continuity equation, which represents the
conservation of mass:

Du

Dt
+ 2
� u +
� (
� r) = �1

�
rp+r�g + �r2

u; (1.2)

r � u = 0; (1.3)

where D=Dt is the material derivative, u (r; t) is the velocity vector relative to the
rotating system, r is the position vector, 
 is the angular velocity of the rotating
reference frame, p is the pressure, �g is the gravitational potential, � is the constant
fluid density, � is the constant kinematic viscosity andr2 is the laplacian operator.
See, for example, Kundu (1990) for a derivation of these equations.

In the l.h.s. of equation (1.2), the first term represents the fluid acceleration in
the rotating system, the second term is the Coriolis acceleration and the third term
is the centripetal acceleration, which can be written as the gradient of a centrifugal
potential, �r�c = �r

�
j
� rj2 =2

�
, and combined with the term r� in the

r.h.s., by defining a total potential � = �g + �c. The first term in the r.h.s. of
the Navier-Stokes equation represents the pressure gradient-force (per unit mass),
the second term is the conservative gravitational force and the last term is the non-
conservative viscous force for Newtonian, incompressible fluids (for which the
continuity equation (1.3) is valid).
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The relative vorticity vector is defined as ! = r � u. By taking the curl of
equation (1.2) and using adequate vector identities, the relative vorticity equation
reads (see Pedlosky 1987 for a complete derivation):

D!

Dt
= [(2
+ !) � r]u+ �r2

!; (1.4)

where (2
+ !) is usually defined as the absolute vorticity vector and the baro-

clinic vector, i.e.
r��r (p� ��)

�2
, vanishes for constant �; the fluid in this case

is referred to as barotropic.
By using a length scale L and a velocity scale U which characterize the flow,

nondimensional variables can be introduced, denoted by primes:

r
0
= r=L;

u
0
= u=U;

t
0
= t (U=L) :

(1.5)

Equations (1.2) and (1.4) can then be adimentionalized, by setting
 = 
k where
k is the unit vector along the axis of rotation. The relative acceleration term in
equation (1.2) can be estimated as Du=Dt = O

�
U
2
=L
�
, the Coriolis acceleration

as 2
k � u = O (2
U) and the frictional force (per unit mass) as �r2
u =

O
�
�U=L

2
�
. The ratio of the relative to the Coriolis acceleration in equation (1.2)

is referred to as the Rossby number:

Ro =
U

2
L
: (1.6)

In the same way, the ratio of the relative acceleration to the frictional force per unit
mass is the Reynolds number, and the ratio of the frictional force per unit mass to
the Coriolis acceleration is referred to as the Ekman number:

Re =
UL

�
; (1.7)

Ek =
�

2
L2
: (1.8)

Strong rotating flows or large scale flows have small Rossby and Ekman numbers
(� 1); turbulent flows have, in general, large Reynolds numbers (Re� 1000).

In geophysical fluid dynamics, particular importance is given to the concept
of potential vorticity, which satisfies a conservation law, under certain constraints.
If one considers a scalar fluid property �, which satisfies an equation of the form
D�=Dt = 	, where 	 is a source term of �, from equation (1.4) one can derive
that the potential vorticity

� =
2
+ !

�
� r� (1.9)

is a material invariant, i.e.
D�

Dt
= 0; (1.10)

if the following constraints are valid:

13



� 	 = 0, namely � is a material invariant;

� the viscous force is negligible, namely � �= 0 or Re� 1;

� either the fluid is barotropic or � depends only on p and �.

This is the Ertel theorem, whose demonstration can be found in Pedlosky (1987).
Another important theorem of basic fluid dynamics, which I will use widely

in the following, is the Taylor-Proudman theorem, which is valid for barotropic,
inviscid and fast rotating flows, namely for homogeneous flows with small Ekman
and Rossby numbers. Under these hypothesis, scale analysis performed in the
relative vorticity equation (1.4) leads to neglect both the viscous term and the term
D!=Dt with respect to the term [(2
 + !) � r]u. Furthermore, if the Rossby
number is small, ! � 2
 since ! = O(U=L), thus equation (1.4) reduces to the
constraint:

(2
 � r)u = 0; (1.11)

which, in the case the rotation axis is parallel to the z axis, means:

@u

@z
=
@v

@z
=
@w

@z
= 0: (1.12)

It follows from (1.12) and from the continuity equation (1.3) that the velocity in
planes perpendicular to 
 must be independent of the coordinate parallel to 


and that in planes perpendicular to the rotation axis, the velocity is nondivergent.
Furthermore, if the vertical component w of the velocity is zero at some level, for
example at a rigid, horizontal surface, it rns zero for all z. The motion is then
completely two-dimensional and can be described as moving in columns of fluid,
the so-called Taylor columns, each column oriented parallel to the rotation axis and
moving so as to maintain this orientation (Taylor 1923).

1.2 The governing equations of barotropic turbulence

The Navier-Stokes equations, in the form (1.2), describe the dynamics of the most
general, incompressible, rotating Newtonian flow. If the fluid has an homogeneous
density, or more generally the isopycnal surfaces are parallel to the isobars, it is
referred to as barotropic fluid. If the flow has a low Reynolds number, it is re-
ferred to as laminar flow. Barotropic turbulent flows, with high Reynolds number
(typically Re � 1000), may be described, under suitable hypotheses, by differ-
ent approximations of the Navier-Stokes equations, such as the shallow-water, the
quasi-geostrophic and the two-dimensional approximations, which show much of
the phenomenology of the nonlinear dynamics that can be observed in large-scale,
turbulent geophysical flows, when rotation dominates.

In the following, these three approximations are examined, and the governing
equations are derived.
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1.2.1 Shallow-water approximation

Consider an homogeneous, incompressible, rotating fluid layer with a free surface
whose height above a flat bottom is given by h (x; y; t), as in figure 1.1. The
reference frame is chosen in such a way that the gravity vector, g = �gk, is
antiparallel to the vertical axis z, and the rotation axis coincides with the z-axis,
i.e., 
 = 
k, where k is the unit vector of the z-axis. The velocity vector has
components u, v and w parallel to the x-, y-, z-axis respectively.

Figure 1.1: Sketch of the shallow-water model for a rotating fluid layer.

The complete Navier-Stokes equations and the continuity equation for such a
fluid model read:

@u

@t
+ u

@u

@x
+ v

@u

@y
+ w

@u

@z
� fv = �1

�

@P

@x
+ �r2

u

@v

@t
+ u

@v

@x
+ v

@v

@y
+ w

@v

@z
+ fu = �1

�

@P

@y
+ �r2

v (1.13)

@w

@t
+ u

@w

@x
+ v

@w

@y
+ w

@w

@z
= �1

�

@P

@z
+ �r2

w;

@u

@x
+
@v

@y
+
@w

@z
= 0 (1.14)

where f = 2
 is the so-called Coriolis parameter, P = p � �� is the reduced
pressure and � and � are the density and the kinematic viscosity coefficient respec-
tively.

The fundamental hypothesis of the shallow-water model is that the scale depth
of the fluid layer, D, is much smaller than the horizontal length scale L, i.e., that

D

L
� 1: (1.15)
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If this hypothesis is satisfied, and if we consider the interior of the fluid layer (far
enough from the bottom, in order to be outside the boundary layer), it follows from
the scale analysis of the Navier-Stokes equations for the x- and y-component of the
velocity that the pressure scale must be given by the largest of the following entries
(Pedlosky 1987):

�L

"
U
2

L
; fU;

�U

D2

#
max

; (1.16)

where U is the horizontal velocity scale, and the advective time scale is supposed
to be of the same order as the local time scale and that the vertical velocity scale,
W, is O (DU=L), as indicated by the scale analysis of the continuity equation.
This implies that the ratio between the material derivative and the vertical pressure
gradient in the equation for the w-component of the velocity is:

�
jDw=Dtj
j@P=@zj = O

 
D

2

L2

Ro

[1; Ro; EkV ]max

!
; (1.17)

and the ratio of the viscous term to the vertical pressure gradient is: :

�

���r2
w
��

j@P=@zj = O

 
D

2

L2

EkV

[1; Ro; EkV ]max

!
; (1.18)

whereEkV = �=fD
2 is referred to as the vertical Ekman number. It turns out that

the quantities in the round brackets are smaller than or equal to (D=L)
2 for every

Rossby and Ekman number; thus, given the hypothesis (1.15), the most important
term in the equation for the vertical component of the velocity is the vertical pres-
sure gradient (see Pedlosky 1987, p. 60, for details). The fluid is then in hydrostatic
approximation, since:

@p

@z
= ��g +O

"�
D

L

�
2
#
; (1.19)

where I used the fact that �g = @�=@z. By integrating equation (1.19) and using
the fact that the pressure at the surface level is given by a constant value p0, it
comes out that the pressure at any point is simply given by:

p = �g(h� z) + p0; (1.20)

which implies that the horizontal pressure gradient is independent of z, i.e,

@p

@x
= �g

@h

@x

@p

@y
= �g

@h

@y
;

(1.21)

so that the horizontal accelerations must also be independent of z (note that for
the horizontal pressure, @P=@x = @p=@x and @P=@y = @p=@y ). It follows that
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the horizontal velocity does not depend on the vertical coordinate if the horizontal
components are initially independent of z, namely the horizontal motion is decou-
pled from the vertical one, and it may be described by the following equations:

@u

@t
+ u

@u

@x
+ v

@u

@y
� fv = �g @h

@x
+ �

 
@
2
u

@x2
+
@
2
u

@y2

!
;

@v

@t
+ u

@v

@x
+ v

@v

@y
+ fu = �g @h

@y
+ �

 
@
2
v

@x2
+
@
2
v

@y2

!
:

(1.22)

The vertical velocity can immediately be derived by integrating the continuity
equation (1.14) along z and using the fact that the vertical velocity vanishes at the
rigid bottom, which yields:

w (x; y; z; t) = �z
�
@u

@x
+
@v

@y

�
: (1.23)

By using the value of w at the surface level h, and knowing that

w =
Dz

Dt
(z = h) =

@h

@t
+ u

@h

@x
+ v

@h

@y
; (1.24)

it is possible to write the shallow-water equation for the conservation of mass:

@h

@t
+
@ (hu)

@x
+
@ (hv)

@y
= 0: (1.25)

Equations (1.22), together with the equation (1.25), constitute the shallow-water
approximation. The flow motion occurs by columns of fluid, whose depth is gov-
erned by equation (1.25).

In the same way as it has been done for the Navier-Stokes equations, it is
possible to derive a shallow-water equation for the relative vorticity by taking the y-
derivative of the first of (1.22) and subtracting it from the x-derivative of the second
of (1.22); this yields the equation for the z-component of the relative vorticity:,

!z = � =
@v

@x
� @u

@y
(1.26)
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@
2
�

@y2

!
: (1.27)

The viscous terms represented in this vorticity equation, as well as in equations
(1.22), are referred to as lateral viscosity, which is different from the viscous effects
associated with the bottom friction or the surface wind-stress. Equations (1.22)
and (1.27) are valid in the interior of the fluid layer, while near the bottom an
appropriate boundary layer theory has to be applied. Some consideration on this
subject will be done in chapter 2, when dealing with experiments in a rotating tank.

17



In the inviscid case, the constraints for the validity of the Ertel’s theorem are
satisfied for the scalar � = z=h, and the potential vorticity �SW = (� + f) =h is a
material invariant, namely:

D�SW

Dt
=

D

Dt

�
� + f

h

�
= 0: (1.28)

This equation states that the relative vorticity of a fluid column varies accordingly
to the depth variations of the fluid layer, since the Coriolis parameter is constant in
this model; a stretching of the fluid columns forces relative vorticity to decrease,
while the contrary occurs for a contraction of the fluid columns.

1.2.2 Quasi-geostrophic approximation

Starting from the shallow-water approximation, I introduce now an additional hy-
pothesis, namely that the fluid is in fast rotation. In term of nondimensional pa-
rameters, this is equivalent to suppose that the Rossby number is very small:

Ro =
U

2
L
=

U

fL
� 1: (1.29)

For rapidly rotating flows, such as the ones this thesis deals with, it is possible to
nondimentionalize the shallow-water equations (1.22) and (1.25), and to expand
the velocities in an asymptotic series in the Rossby number (Pedlosky 1987). The
zeroth-order approximation leads to the so-called geostrophic balance between the
Coriolis force and the gradient of the fluid depth (which is related to the pressure
gradient); the quasi-geostrophic approximation is given by the expansion at the
first order.

By introducing the notation:

h (x; y; t) = D + � (x; y; t) ; (1.30)

where � is the elevation of the free-surface above the level at rest, nondimentional-
ization of equations (1.22) and (1.25) yields (disregarding the primes):
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(1.31)
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�
= 0; (1.32)

where H is used as a scale for the free-surface elevation. In order to have forcing
in the fluid, H is choosen in such a way that the coefficient gH=fLU isO (1), i.e.,
H = Ro �

�
f
2
L
2
�
=g.
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We define the (barotropic) Rossby deformation radius,R, as:

R =

p
gD

f
; (1.33)

and the expression of H=D is given by:

H

D
= Ro � L

2

R2
= Ro � F; (1.34)

where 1=F = R
2
=L

2 is the nondimensional, square Rossby deformation radius.
By inserting in equations (1.31) and (1.32) the expansions for the velocity compo-
nents and the free-surface elevation in series of the Rossby number:

u (x; y; t; Ro; Re) = u0 + Ro � u1 + : : : ;

v (x; y; t; Ro; Re) = v0 + Ro � v1 + : : : ;

� (x; y; t; Ro; Re) = �0 + Ro � �1 + : : : ;

(1.35)

the O (Ro) terms in the equations of motion yield (considering that the lowest-
order velocity field (u0; v0) is nondivergent):�
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(1.36)
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@�0
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@�0
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�
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+
@v1

@y

�
= 0: (1.37)

If the gradient of the free-surface elevation is eliminated by cross differentia-
tion of equations (1.36) with respect to x and y, and if the (1.37) is used in order
to eliminate the divergence of u1, it is possible to obtain the quasi-geostrophic
potential vorticity equation:

@

@t
(�0 � F�0) + (u0 � r) (�0 � F�0) =

1

Re
r2
�0; (1.38)

where the relative vorticity is given by the expression:

�0 =
@v0

@x
� @u0

@y
= r2

�0; (1.39)

since u0 = �@�0=@y and v0 = @�0=@x (lowest-order geostrophic balance), and
the potential vorticity is:

�0 = �0 � F�0: (1.40)

The problem for quasi-geostrophic motion is then given entirely in terms of
the free-surface elevation, related to the pressure. Once �0 is determined as a so-
lution of (1.38), the horizontal velocity is determined by the geostrophic balance
equations.
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Since the motion is two-dimensional, in the sense that the horizontal compo-
nents of the velocity vector do not depend on the vertical coordinate, it is possible
to consider the free-surface elevation as a stream function �0 =  (x; y; t), which
satisfy the continuity equation and has the property that the velocity vector is tan-
gent to it in every point of space. In term of stream function, velocity components
and relative vorticity are given by (disregarding the subscripts):

u = �@ 
@y

; v =
@ 

@x
; (1.41)

� = r2
 ; (1.42)

and the (nondimensional) quasi-geostrophic potential vorticity equation reads:
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Re
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where J is the Jacobian operator

J = [a; b] =
@a

@x

@b

@y
� @a

@y

@b

@x
: (1.44)

In the inviscid case (� = 0), it is possible to verify that two quadratic quanti-
ties are conserved in the QG approximation, namely the total energy and the total
potential enstrophy:

E =

Z
A

e dA =
1

2

Z
A

h
(r )2 + F 

2

i
dA; (1.45)

Z =
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z dA =
1
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Z
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�
r2
 � F 

�
2

dA; (1.46)

where the integral is calculated over a region A where the fluid is contained and on
whose boundary the normal velocity vanishes; e is the total energy density (sum
of the kinetic and the available potential energy) and z is the potential enstrophy
density. See Pedlosky 1987, p. 164, for a complete demonstration.

1.2.3 The two-dimensional approximation

Both in the shallow-water model and in the quasi-geostrophic model, the motion
is two-dimensional, in the sense that the horizontal velocities do not depend on
the vertical coordinate, and occurs by columns of fluid of varying depth. The two-
dimensional motion is a consequence of the approximations introduced in the com-
plete 3D Navier-Stokes equations, and it is a valid description of the real motion of
the modelled fluid as long as the introduced hypotheses are valid.

It is anyhow possible to introduce an a priori two-dimensional approximation
of the Navier-Stokes equations, by assuming that the motion is completely de-
scribed by two components of the velocity, which depend only on two coordinates;
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if we consider horizontal motions, it means that u = (u (x; y; t) ; v (x; y; t)). Such
a model may be derived from the Navier-Stokes equations in a manner indepen-
dent of the shallow-water model or the QG model, but it may also be deduced from
these models by adding further hypotheses. Consider, as an example, the quasi-
geostrophic potential vorticity equation (1.43); if we suppose that the fluid layer
has no free surface (the motion is confined between two rigid lids, for instance),
F = 0 and the QG potential vorticity equation reduces to the (nondimensional)
two-dimensional relative vorticity equation:

@�

@t
+ J [ ; �] =

1

Re
r2
�: (1.47)

Note that equation (1.47) can be directly derived from the relative vorticity equation
(1.4) by using the fact that the velocity vector has only two components depending
on two coordinates. This makes equation (1.47) to be valid also when the QG
approximation does not apply, for instance when considering a rapidly rotating
fluid layer which is infinitely high.

In the inviscid case, the total energy and the total enstrophy are conserved; their
expressions are given by (1.45) and (1.46) with F = 0:
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(r )2 dA; (1.48)
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Note that in the 2D case, the total energy reduces to the total kinetic energy and
the total enstrophy reduces to the area integral of the square relative vorticity (apart
from the factor 1/2). In the two-dimensional case, all integrals of the form

Cn =

Z
A

�
r2
 

�
n

dA (1.50)

are conserved, the conservation of enstrophy being the case with n = 2.
The simultaneous conservation of energy and enstrophy is the key property

which distinguishes two-dimensional turbulence from three-dimensional turbulence,
as pointed out in the next section.

1.3 The inverse energy cascade of 2D turbulence

1.3.1 Spectral representation of variables in the 2D approximation

A useful representation for the variables of the fluid is obtained in the Fourier
space, by introducing the 2D spatial Fourier transform:

bf (k; t) = 1

4�2

Z Z
e
ik�r

f (r; t)dr; (1.51)
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as function of the wave vector k = (k; l) having modulus jkj = K; the Fourier
integral representation of the velocity vector, of the relative vorticity and of the
stream function are given by:

u (r; t) =
1

4�2

Z Z
e
�ik�rbu (k; t)dr; (1.52)
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1

4�2

Z Z
e
�ik�rb� (k; t)dr; (1.53)

 (r; t) =
1

4�2

Z Z
e
�ik�r b (k; t)dr: (1.54)

Inserting the Fourier representation of the stream function in the expressions (1.48)
and (1.49) for the total energy and the total enstrophy one obtains
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���2 dk; (1.55)
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���2 dk: (1.56)

In Fourier space, energy density and enstrophy density are linked by the equation:

be (k; t) = bz (k; t)
K2

: (1.57)

If we consider polar coordinates (K; �) in wave vector space, we define the energy
density spectrum as

E (K; t) = K

Z be (K; �; t)d�; (1.58)

and we have:
E =

Z
E (K; t)dK; (1.59)

Z =

Z
K

2E (K; t)dK: (1.60)

In the Fourier representation, the instantaneous flow field is often described
by a spectral distribution of (kinetic) energy density E over a certain range of the
wave vector modulus K. Mathematically, the integrals in (1.59) and (1.60) run
from zero to infinity, but physically, the inverse of the domain size corresponds
to the smallest wavenumber (L � K

�1

min
), and the smallest scale of the flow at

which dissipation takes place corresponds to the largest significant wavenumber
(ld � K

�1

d
). At scales much larger than ld and much smaller than L (that is,

in the inertial range Kmin � K � Kd), dissipative effects are negligible: at
these scales, the nonlinear term in the 2D vorticity equation (1.47) accounts for a
redistribution of energy between different scales, which corresponds to turbulent
eddies of different sizes.
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1.3.2 The inverse energy cascade and the direct enstrophy cascade

In 1941, the Russian mathematician Kolmogorov published his famous work on
3D turbulence in which he showed that the density energy spectrum of the three-
dimensional turbulence is proportional to K�5=3 (Kolmogorov 1941a, 1941b). He
supposed that in a forced 3D turbulent flow the redistribution of kinetic energy in
the inertial range results in a net transport of energy from the large scales (small
K) of the flow, where energy is injected, towards the small scales (large K), where
dissipation occurs. This transfer is well known as the energy cascade of 3D tur-
bulence, and has obtained later numerical and experimental verifications (see, e.g.,
Frisch 1995).

The physical picture of (forced) two-dimensional turbulence is completely dif-
ferent, and this difference with respect to 3D motions comes from the fact that in
2D turbulence, both energy and enstrophy have to be conserved (Kraichnan 1967).
Kraichnan argued that, due to this constraint, all interactions in 2D turbulence,
viewed in Fourier space, necessarily involve three values of the wave vector mod-
ulus: when a transfer of energy occurs from a middle K to either an higher or a
lower K, a transfer of enstrophy in the opposite direction must follow, in order to
conserve both energy and enstrophy.

By using dimensional arguments, as Kolmogorov had done previously for the
3D case, Kraichnan showed that in 2D turbulence the energy spectrum should sat-
isfy the power law

E(K) � �
2=3
K

�5=3
; (1.61)

for K < Kf , where Kf is the forcing scale and � is the energy flux, and the law

E(K) � �
2=3
K

�3
; (1.62)

for K > Kf , where � is the enstrophy flux. He proved, moreover, that the validity
of (1.61) implies a zero flux of enstrophy between different wavenumbers, together
with a constant energy flux, and that the validity of (1.62) yields a zero energy flux
and a constant enstrophy flux. For Kmin < K < Kf , where the energy spec-
trum is proportional to K�5=3, an inverse cascade of energy occurs (constant �)
from higher to lower wavenumbers (largest scales permitted by the boundary con-
ditions), whereas for Kf < K < Kd, where the energy spectrum is proportional
to K�3, a direct cascade of enstrophy occurs (constant �) from lower to higher
wavenumbers, where enstrophy is dissipated (at smallest scale); see figure 1.2 for a
sketch of the energy spectrum. Both Batchelor (1969) and Kraichnan (1971) later
proposed a logarithmic correction to the K�3 spectrum of the direct enstrophy
cascade.

Kraichnan’s argument can be easily verified in this way: consider an initial
energy spectrum peaked about a certain wavenumberK0; the nonlinear interactions
will transfer the energy to different wavenumbers, for instance toK1 and K2, with
K1 < K0 < K2. Conservation of spectral energy and enstrophy requires that

E0 = E1 + E2; K
2

0
E0 = K

2

1
E1 +K

2

2
E2; (1.63)
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Figure 1.2: Sketch of the energy spectrum in (forced) 2D turbulence. Energy is introduced at
wavenumber Kf . An inverse energy cascade occurs, which transfers energy to wavenumbers K <

Kf , leading to a K�5=3 spectrum, whereas a direct enstrophy cascade towards K > K f leads to a
K�3 energy spectrum.

from which it follows that the ratios between the energies and enstrophies at the
wavenumbers K1 and K2 are given by:

E1
E2

=
K2 �K0

K0 �K1

� K2 +K0

K1 +K0

; (1.64)
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(1.65)

If we suppose, as an example, that K1 = K0=2 and K2 = 2K0, the (1.64) and
(1.65) give the ratios E1=E2 = 4 and (K

2

1
E1)=(K2

2
E2) = 1=4, which means that

energy moves preferentially towards small wavenumbers, while enstrophy moves
towards large wavenumbers. This simple example shows also the meaning of the
expressions: ”inverse cascade of energy” and ”direct cascade of enstrophy”.

Strictly speaking, Kraichnan’s theory applies only to the case of homogeneous
and steadily forced 2D flow, but a direct enstrophy cascade has also been observed
in numerical simulations of decaying 2D turbulence, for instance by McWilliams
(1984), Brachet et al. (1986 and 1988), Santangelo et al. (1989), starting from an
initial random state .

1.3.3 Numerical and experimental evidence

The inverse energy cascade and the direct enstrophy cascade have been object of
intense research aimed at observing them both in numerical simulations and in
laboratory experiments. The problem is that, in order to obtain a reliable spectrum
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for the whole inertial range, a fairly high resolution of numerical and experimental
data is required.

Frisch & Sulem (1984) presented the first clear evidence of an inverse energy
cascade with aK�5=3-spectrum in a numerical simulation of forced 2D turbulence.
From the laboratory viewpoint, experiments carried out by Paret & Tabeling (1997
and 1998) and by Paret (1999) in a quasi two-dimensional, magnetically forced
electrolyte, showed the existence of an inverse energy cascade and a direct enstropy
cascade in the measured energy spectra. The numerical simulations of decaying
2D turbulence indeed showed a K�3-spectrum during the initial stages of the flow
evolution (Brachet et al., 1986 and 1988), but a gradual steepening of the spectrum
was found at longer times (McWilliams 1984). These late-time energy spectra,
moreover, appeared to depend strongly on the type of initial condition (Santangelo
et al., 1989).

Numerical simulations have shown, moreover, that Kraichnan’s theory might
have overlooked one important aspect of the 2D flow evolution:associated with the
fact that the energy is transfered from the smallest to the largest eddies, the disor-
dered flow gradually organizes into large and coherent structures, the so-called co-
herent vortices. These vortices are usually long-lived, and carry most of the energy
of the flow. Because of the presence of such structures, Kraichnan’s assumptions
of homogeneity and self-similarity are invalidated, and the observed spectra are
usually much steeper than expected. Barotropic coherent vortices are the subject
of the next section.

1.4 Barotropic coherent vortices

McWilliams (1984) was the first who realized that freely decaying 2D turbulence
self-organizes from an initially disordered vorticity field, leading to the emergence
of coherent vortices which are stable and long-lived. The presence of coherent vor-
tices has a great impact on the dynamics of the turbulent flow. He suggested that
coherent vortices completely dominate the late-time evolution of decaying 2D tur-
bulence and may also arrest the turbulent processes such as the spectral transfer and
the selective decay. Starting from these ideas, numerical simulations and laboratory
experiments have been carried out in the last two decades, aimed at investigating
the emergence, the development and the interactions of coherent vortices, not only
in (barotropic) freely-decaying 2D turbulence, but also in forced 2D turbulence, in
quasi-geostrophic turbulent flows, and in baroclinic conditions (stratified fluids).

1.4.1 The emergence and development of barotropic vortices in 2D
turbulence

By using numerical simulations, it is possible to show that an initially random, two-
dimensional, freely decaying vorticity field having a narrow-band kinetic energy
spectrum, peaked about a wavenumber K0 far from the dissipative wavenumbers,
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self-organizes into different topological areas, locally breaking down the hypothe-
sis of homogeneous turbulence. Vorticity centers emerge from the random field and
start to coalesce, leading to the formation of coherent vortices, where the adjective
“coherent” identifies a flow structure which is long-lived and has a well-definite
shape (see figure 1.3).

Vortices that emerge in 2D turbulent fields tend to concentrate energy and vor-
ticity inside their cores and to assume an axisymmetric shape. These coherent
islands of high energy and vorticity move around in a turbulent background of
small-scale structures, which on the contrary have generally low energy and vor-
ticity, no coherent shape and short life-time, comparable with the eddy turnover
time (which can be defined as the inverse square root of the enstrophy).

Coherent vortices may be monopoles, i.e., isolated cores of either positive (cy-
clones) or negative vorticity (anticyclones). Interactions between monopoles lead
to the formation of more complex structures or to the merging of two vortices,
depending on their relative signs. When two oppositely signed monopoles come
close together, they usually form a dipole, which contains a net linear momentum
and may therefore move rapidly through the fluid with a self-sustained propulsion
mechanism. On the other hand, the close interaction of two like-signed vortices
may lead to their merging and the subsequent formation of one new monopolar
vortex, generally larger than the original ones. Merging process occurs when the
two vortex centres approach within a sufficiently small distance (Melander et al.
1988); they start to perform a circling motion around each other in which they are
deformed and eventually the weaker vortex is absorbed by the stronger one.

Due to all these processes, the number of vortices in a decaying turbulent flow
decreases gradually, and their average size increases. In addition, coherent vortices
may also be strained by the shear flow produced by all the other vortices, which
leads to the formation of thin elongated filaments with strong vorticity gradients,
that become part of the turbulent background. This process represent the physical
manifestation of the enstrophy cascade towards smallest scales, where it is finally
dissipated by viscosity. The formation of vortices, on the contrary, has been asso-
ciated with the presence of an inverse cascade of energy from small to large scales,
but this mechanism alone is not sufficient to explain the emergence of vortices from
random initial conditions. Actually, the question ’why do coherent vortices form’
has not yet a complete answer, and the issue is still open.

Numerical simulations are generally performed for a flow with a very high
Reynolds number, by using hyperviscosity1 as a dissipative term, more than a New-
tonian viscous term like in equation (1.47). The modelled flow has a small but fi-
nite viscosity. However, the energy cascades towards large scales where dissipation
does not occur, and this allows the energy to be practically conserved. By contrast,

1In order to confine the effects of damping to the smallest scales and to reach higher effective
Reynolds numbers, the ordinary Newtonian dissipation term in the 2D vorticity equation is often
replaced by an artificial term of the form (�1)p+1�pr

2p�; the case p = 2 corresponds to bihar-
monic viscosity. The physical interpretation of such numerical dissipation mechanism is still under
discussion. See also section 4.

26



Figure 1.3: Vorticity fields obtained in a numerical simulation of two-dimensional, freely decay-
ing turbulence. In panel (a), the initial conditions for the vorticity are shown, obtained by using a
Gaussian random realization for the phases of each Fourier component of the field and a fixed energy
spectrum peaked at a certain wavenumber (McWilliams 1990). Panel (b) shows the vorticity field at
(nondimensional) time t = 33, where fully-developed coherent vortices are clearly distinct from the
turbulent background. Cyclones are red, while anticyclones are blue. The simulation is performed
in a doubly periodic square domain with size 2�, by using a resolution 512 � 512 and a time step
dt = 10�3 .
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enstrophy decays substantially due to an efficient dissipation at small scale, where
it is transfered by the direct cascade. As time goes on, concentrates into coherent
vortices and also the enstrophy decay becomes slower.

When the turbulent flow is characterized by fully-developed coherent vortices
embedded in a turbulent background, the vortex population appears to be self-
similar (Weiss 1993, Bracco et al. 2000). Long-time numerical simulations have
shown that, if the Reynolds number is sufficiently high, interactions among vortices
continue (although with smaller probability) until only one large coherent structure,
or a dipole (if the initial circulation is zero) remains, with a size comparable to the
dimension of the domain. This quasi-stationary final state is characterized by a
linear relationship between the vorticity and the stream function (Matthaeus et al.
1991).

Emergence and development of coherent vortices in (quasi) 2D turbulent flows
have been actively studied also in laboratory experiments. Tabeling et al. (1991)
have used a thin layer of an electrolyte confined in a small container and forced by
an electrical current which is driven by an arrangement of magnets with alternating
poles, placed below the bottom of the container. After the forcing is stopped, merg-
ing of like-sign vortices results in a fast self-organization of the flow. Although the
effects of bottom friction induce strong dissipation, this experimental set-up has
been extensively used to verify several aspects of purely 2D freely-decaying turbu-
lence with high Reynolds number. Reasonably good agreement was found between
the evolution of statistical vortex properties, such as vortex numerical density and
average vortex radius (Cardoso et al. 1994, Hansen et al. 1998) and the scaling
theory developed by Carnevale et al. for 2D flows in free decay (1991 and 1992).
Another class of experiments was initiated by Couder (1984), who observed the
formation of quasi 2D coherent vortices in a thin liquid soap film, initially forced
by means of a grid or vertical needles. The dynamics of isolated vortices and
vortex interactions have been object of experimental interest in rotating flows. A
review on quasi 2D vortices in rotating fluids can be found in a paper by Hopfin-
ger and van Heijst (1993). Alternatively, self-organization in rotating fluids was
observed in spin-up experiments (van Heijst 1989, van Heijst et al. 1990, van de
Konijnenberg 1995), where a fluid, initially in solid body rotation, is accelerated by
increasing suddenly the angular velocity of the container; many small-scale struc-
tures are created due to the separation of viscous boundary layers, and organize
themselves into an array of counter-rotating vortices before the fluid has reached
again a state of solid body rotation.

Although this thesis deals only with freely-decaying turbulent flows, barotropic
vortices in forced 2D flows have been discussed numerically by Babiano et al.
((1987a, 1987b, 1990, 1994, 1995), Legras et al. (1988), Ohkitani (1991), Mal-
trud & Vallis (1991, 1993), Provenzale et al. (1995, 1999), and experimentally by
Paret & Tabeling (1997, 1998), Paret et al. (1999), Rutgers (1998), Elhmaidi et al.
(1993).
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1.4.2 Scaling laws

In 1990, McWilliams presented a quantitative analysis of vortex dynamics in 2D
flows, introducing a vortex census based on vortex properties such as amplitude,
size, radial profile and deformation from the axisymmetric shape, for a large num-
ber of vortices in a long-time numerical simulation of 2D turbulence. He showed
that, for a broad class of initial conditions, the numerical density of vortices (i.e.,
the number of vortices per unit area) decreases according to % (t) � t

�� , with
� � 0:75, and that the average extreme of vorticity inside the vortex cores, h�i

ext
,

is conserved during the self-organization.
Carnevale et al. (1991, 1992) have proposed a new scaling theory for the sta-

tistical vortex properties of decaying two-dimensional turbulence. If one assumes
that in a inviscid, dilute “gas” of vortices, the vortex density %(t) depends on both
the constant energy density e and the constant average peak vorticity h�i

ext
, which

are related by the expression

e � % (t) h�i2
ext
a (t) ; (1.66)

where a (t) is the average vortex radius, a characteristic length scale l =
p
e= h�i

ext

and a characteristic time scale � = 1= h�i
ext

are determined. Assuming that the
evolution of the vortex properties can be expressed as algebraic power laws, di-
mensional reasoning shows that the exponents of these power laws are all related
to one single, “universal” parameter �:

% (t) � l
�2

(t=�)
��
;

a (t) � l (t=�)
�=4

;

hZ (t)i � �
�2

(t=�)
��=2

;

hr (t)i � l (t=�)
�=2

:

(1.67)

The value of the parameter � is not determined by the theory itself, but has been
computed in several numerical studies (Weiss & McWilliams 1993, Dritschel 1993),
as well as in experimental studies (Cardoso et al. 1994, Hansen et al 1998). Ver-
ification of the scaling laws at very high Reynold number has been discussed by
Bracco et al. (2000). The application of the inviscid theory by Carnevale et al. to
bounded flows is still under discussion.

1.4.3 Topology of two-dimensional turbulence

As evident in figure 1.2, a two-dimensional vorticity field at late times may be
partitioned in two very different spatial regimes: a turbulent background with low
energy and vorticity, more or less unstructured, and the coherent vortices, which
have high energy and vorticity and strongly coherent shape.

A simple quantitative criterion to distinguish these two areas has been proposed
by Okubo (1970), Weiss (1981) and used by Elhmaidi et al. (1993), Provenzale et
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al. (1995) and many others. It is based on the difference between the squares of
strain and vorticity:

Q �
�
S
2

n
+ S

2

s

�
� �

2
: (1.68)

where the normal and shear components of the strain are defined as Sn = @u=@x�
@v=@y and Ss = @v=@x+ @u=@y. This criterion creates an elementary partition
of the vorticity field in two distinct domains, called elliptic (where Q < 0 and the
rotation dominates over the deformation) and hyperbolic (where Q > 0 and the
strain dominates). In a “frozen” field, elliptic regions are characterized by an ap-
proximate constancy of the distance between nearby particles, whereas hyperbolic
regions are characterized by local exponential divergence of nearby particles. Note,
however, that this criterion does not bear any direct information on the chaotic or
regular behaviour of particle trajectories in the evolving turbulent field.

Using this criterion, vortices are distinguished from the turbulent background
according to the following partition:

1. the vortex cores are strongly elliptic domains where Q � 0 and rotation
dominates over deformation;

2. the circulation cells at the periphery of coherent structures are strongly hy-
perbolic domains whereQ� 0 and strain dominates over rotation. They are
also regions of high kinetic energy;

3. the turbulent background is the region where Q � 0 and both kinetic energy
and vorticity are low; it may be further divided into hyperbolic background
patches where Q > 0 and elliptic patches where Q < 0.

The edge of coherent structures may be identified by the value Q = 0, in
combination with a high value of kinetic energy (Elhmaidi et al. 1993, Paparella et
al. 1997). In figure 1.4, the Q-value field which corresponds to the vorticity field
in figure 1.3b is shown, and the three topological components are clearly distinct.

Okubo-Weiss’ criterion has been discussed by various authors; in particular,
Basdevant & Philipovitch (1994) have shown that is strictly justified only in a small
portion of the turbulent field, and Hua & Klein (1998) have proposed an extension
of this approach that explicitly takes into account time evolution. Recently, Boffetta
et al. (2001) have reviewed some different techniques for describing the topology
of a turbulent field, and have proposed a new Lagrangian diagnostics, based on the
Finite Size Lyapunov Exponent.

Despite all the criticisms, Okubo-Weiss’ criterion has been extensively used in
the study of absolute dispersion of passively advected fluid particles in 2D turbu-
lence, and it has proven to be of value in the identification of the trapping prop-
erties of barotropic coherent vortices and in the observation of different transport
regimes associated with different regions of the turbulent flow (Elhmaidi et al.
1993, Provenzale 1999).

Because of its simplicity, in this thesis I shall extensively use this topological
diagnostic, when there will be the need of distinguishing the coherent vortices from
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Figure 1.4: The field of the Okubo-Weiss parameter, Q, corresponding to the vorticity field at
(nondimensional) time t = 33 shown in figure 1.3b. Vortex cores (Q � 0) are bright and quasi-
circular, circulation cells (Q � 0) are the dark rings that surround vortex cores.

the turbulent background and, from the Lagrangian point of view, of knowing the
position of the particles with respect to the vortex cores.

1.4.4 Vortices in the quasi-geostrophic and shallow-water
approximations

When free surface effects (QG model, with small Rossby number) or slow rota-
tion effects (SW model) are present, coherent vortices show a different dynam-
ics with respect to the simple case of two-dimensional turbulence. Numerical
vortex dynamics in the barotropic quasi-geostrophic approximation, with a finite
Rossby deformation radius, has been discussed by Polvani et al. (1989), Larichev
& McWilliams (1991), Waugh (1992), Kukharkin et al. (1995). Vortex dynamics
in the shallow-water model has been addressed by Ripa (1987), Farge & Sadourny
(1990), Polvani et al. (1994), Arai & Yamagata (1994), Stegner & Dritschel (2000).

In the QG model, the presence of a free surface slows down the inverse cascade
at scales larger than the Rossby deformation radius, R. Vortices form and grow
by merging as in 2D turbulence, until they reach a scale of order R; after this
stage, the finite Rossby deformation radius introduces a shield effect and strongly
diminishes the interactions among vortices at distances larger than dR � 2�=

p
F ,

where 1=F = R=L is the nondimensional Rossby deformatium radius. This in turn
leads to a very slow evolution because the vortices interact only weakly with each
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other, which slows down the energy transfer to larger scales. The typical length
scale of a QG flow with free surface is therefore the Rossby deformation radius.

In decaying shallow-water turbulence with Rossby number of order one, it has
been shown that the departure from quasi-geostrophy leads to a significant cyclone-
anticyclone asymmetry for which anticyclonic vortices are generally more stable.
However, in turbulence many mechanisms may be responsible for this dynamical
asymmetry: merging processes, stability mechanisms, wave-vortex interactions,
three-dimensional effects. The role played by ageostrophic effects in vortex dy-
namics is still not well understood.

1.5 Geophysical applications of barotropic turbulence

Barotropic turbulence is often used to describe the large-scale dynamics of the
ocean and the atmosphere by means of a simple model. The reason is that the
barotropic approximation can be widely applied, as a first approximation, when
considering the dynamics of the ocean under the pycnocline2, where the den-
sity becomes fairly constant with depth, and the dynamics of the stratosphere 3,
where density decreases slowly with height. Necessarily, the motions described by
barotropic models can only be expected to apply to geophysical phenomena which
do not depend in a crucial way on stratification.

1.5.1 Governing equations for large-scale geophysical flows

The fact that both the ocean and the atmosphere have very large horizontal extent
and thin vertical thickness4, makes it possible to describe their large-scale dynam-
ics, in a first approximation, and only for conditions of stable starification, by using
a shallow-water model, or a quasi-geostrophic model at latitudes where the local
component of the Earth’s rotation is important.

The Earth is a non-flat rotating system, thus the complete Navier-Stokes equa-
tions must contain the effects due to the curvature of the Earth’s surface. In order
to describe the flow in the Earth’s atmosphere and oceans, the planet is modelled
as a sphere of radius R, disregarding the small eccentricity. Spherical coordinates
(r; �; �) are used, where r is the sum of the Earth’s radius and the vertical height
above the sea level (or the negative depth below the sea level), � is the longitude
and � is the latitude (see figure 1.5a). The complete set of equations of motion on
a rotating sphere can be derived by using the hypothesis that the mean thickness

2The pycnocline is the layer of the ocean, under the surface layer, where a sharp change in density
with depth occurs. It lyes between 0.1-1 km depth at low latitudes, less at mid-latitudes.

3The stratosphere is the layer of the atmosphere lying between 10-50 km altitude.
4The depth of the ocean rarely exceeds six kilometers, and the vertical extent of major current

system is usually much less than that. On the contrary, the horizontal scales is hundreds or even
thousands of kilometers. Similarly, large-scale atmospheric phenomena have a characteristic vertical
scale of ten kilometers, while the horizontal scale is about one thousand of kilometers (sinoptic scale)
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of the atmosphere and the oceans is much smaller than the Earth’s radius (see e.g.
Holton 1979).

Figure 1.5: Schematic views of the spherical coordinate system used for the Earth (a) and of the
local reference frame on a plane tangent to the Earth’s surface (b).

In the same way, it is possible to obtain the equations on a rotating sphere in the
shallow-water approximation (see e.g. Muller 1995), in which geometrical terms
associated with the curved surface of the planet are still present.

However, if the horizontal scales of motion are much smaller than the Earth’s
radius, the curvature of the Earth’s surface can be neglected and a local coordinate
system on a plane tangent to the surface of the planet can be used, as depicted
in figure 1.5b. In this new reference frame, z is the local vertical height, x and
y are the horizontal coordinates tangent to the surface and the rotation vector has
components 
 = (0;
 cos (�) ;
 sin(�)). From this it follows that the Coriolis
acceleration is given by:

2
� u = 2
 (�v sin (�) ; u sin (�) ;�u cos (�)) (1.69)

= (�fv; fu;�2
u cos (�)) ; (1.70)

where now the Coriolis parameter is f = 2
 sin (�) that, in general, depends on
latitude.

As a simplification, f is often assumed to be a constant,i.e.

f = f0 = 2
 sin (�0) ; (1.71)

where �0 is the central reference latitude of the domain considered. This approxi-
mation is usually referred to as the f-plane approximation. In this approximation,
provided that the vertical component of the Coriolis acceleration is negligible with
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respect to the pressure gradients (as it is indeed), the flow dynamics can be de-
scribed by the shallow-water equations (1.22) and (1.25) where the Coriolis pa-
rameter is replaced by the expression (1.71). Furthermore, if the Rossby number is
small enough, a quasi-geostrophic approximation on the f-plane can be used, and
the dynamics can be described by using equation (1.43).

An improved representation of the latitudinal variation of the Coriolis parame-
ter can be obtained by expanding it in aTaylor series around the reference latitude
�0; at first order, the approximation is usually referred to as the �-plane approx-
imation. In this case, the equations of motion have an additional term, propor-
tional to the value � = 2
 cos (�0) =R, which changes the dynamics of turbulence.
Throughout this thesis, �-effects are disregarded, and only the f-plane approxima-
tion is taken into account when referring to geophysical applications of barotropic
turbulence.

Some final remarks have to be made about the role of viscosity in geophysical
flows. In the shallow-water and the quasi-geostrophic models described in the pre-
vious sections, viscous effects are due to the molecular viscosity. For geophysical
flows, the Ekman number is extremely small, if evaluated by using the molecular
viscosity coefficient, thus molecular viscous effects can be neglected. Neverthe-
less, the interaction between the large-scale motions, nearly inviscid, and the small-
scale turbulent motions, may leads to exchange of momentum and energy, which
eventually affects the large-scale flow. The viscous interaction between different
scales of motion can be parameterized by introducing a turbulent eddy viscosity
both in the horizontal and in the vertical direction, whose coefficients are usually
denoted as AH and AV , respectively. Equations (1.22), and (1.43) are still valid,
by replacing � by AH and AV

5

1.5.2 Vortices in geophysical flows

Long-lived, large-scale vortices are common features in the Earth’s atmosphere
and oceans, as well as in the atmospheres of the outer planets. Such vortices are
known to greatly influence the transport properties of the global circulation, whose
study is a key issue of geophysical fluid dynamics.

Starting from the outer planets, Jupiter’s Great Red Spot is a long-lived co-
herent vortex in the upper atmosphere of this planet, which exist since more than
300 years (Smith et al.1979, Ingersoll 1990, Dowling 1995). Another example is
Neptune’s Great Dark Spot.

Quasi two-dimensional coherent vortices play an important role in the Earth’s
atmosphere: examples include the antartic polar vortex (see e.g. McIntyre 1989,
1995), and tropical cyclones (Rossby 1949, Adem 1956, Chan & Williams 1987).

In the oceans, quasi-2D vortices have been detected in the Gulf Stream, in the
form of rings that detach from the current (Ring Group 1981, McWilliams 1985).

5These coefficients are difficult to estimate in the oceans and in the atmosphere. Typical values
for the ocean are AH � 105 � 108 cm2s�1 and AV � 1 � 103 cm2s�1; for the atmosphere,
AH � 109 cm2s�1 and AV � 105 cm2s�1 (see Pedlosky 1987).
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Other examples include the salty Mediterranean eddies (the so-called meddies) in
the Atlantic Ocean, which detach off-shore of Portugal’s coast (Flierl 1987, Armi
et al. 1989, Richardson et al. 1989, 1991), or the large-scale vortices that detach
from the Agulhas current near South-Africa (Goni et al. 1997). Such vortices have
a diameter of a few hundreds kilometers and may persist for months or even years.
Due to their relatively long life-times, some of these vortices may travel for long
distances, transporting salt and heat from one region of the ocean to another. This
mechanism, in turn, may affect the world-wide ocean circulation, with possible cli-
matic effects. Thus, ortex dynamics and transport by coherent vortices are then key
issues in geophysical fluid dynamics; the goal of this thesis is to add a further piece
to the puzzle by means of laboratory and numerical simulations in the framework
of barotropic turbulence.
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Chapter 2

Laboratory experiments on
vortex dynamics

This chapter deals with laboratory experiments on the dynamics of long-lived co-
herent vortices in rapidly rotating, barotropic flows in free decay. The experiments
have been carried out in a large rotating tank (diameter of 14 meters) by using dif-
ferent flow visualization techniques: Particle Image Velocimetry and Laser Induced
Fluorescence. First, the experimental set-up is discussed, with a brief description
of the flow visualization techniques that have been used. The evolution of the
turbulent field, starting from quasi-random initial conditions, and the interactions
among the coherent vortices are then described. Time sequences of Eulerian char-
acteristics of the flow and of the vortices are discussed, for different values of the
Rossby number, the Reynolds number and the Rossby deformation radius.

37



2.1 Laboratory modelling of rotating flows

In order to model a geophysical flow for which rotation is important (large-scale
flows), laboratory experiments have to be performed in a rotating reference frame.
One of the most common techniques consists in carrying out experiments by us-
ing water in rotating tanks, which allow to simulate the effects of the Coriolis
force. The diameter of these experimental facilities is important in order to reach
small values of the Rossby number without rotating too fast, since fast rotation
implies nonnegligible free-surface effects (surface paraboloid) that alter the dy-
namics of the problem. Large-scale rotating tanks also allow to obtain large-scale
flows, which may be important for the study of those phenomena that are not scale-
invariant or when one would like to disregard boundary effects.

The size of rotating tanks that are available in fluid dynamical laboratories
throughout the world may vary between a diameter of one meter up to a diameter
of about ten meters; at the moment, the largest rotating tank in the world is the
”Coriolis” tank of the ”Laboratoire des Ecoulements Géophysiques et Industriels”
(LEGI) in Grenoble (France), which has a diameter of 13 meters. This chapter is
devoted to the description and discussion of the experiments on vortex dynamics
that we have carried out in this large-scale tank.

2.1.1 Fluid dynamics of barotropic flows in rotating tanks

A shallow layer of an homogeneous fluid in a rotating tank can be mathematically
modelled, to a first approximation, by means of the shallow-water model or the
quasi-geostrophic model (if the Rossby number is small enough), as discussed in
chapter 1. These models describe the fluid dynamics in the interior of the flow, but
do not consider the predominant viscous effects at the bottom and at the surface,
where appropriate e boundary layer models have to be used.

Fast rotating homogeneous flows are dominated by quasi two-dimensional colum-
nar motions, as the Taylor-Proudman’s theorem argues. This theorem is strictly
valid for inviscid flows, thus it fails in a thin layer near the tank bottom and near the
water surface, where boundary conditions make viscous effects to be nonnegligible
(in the interior of the fluid, molecular viscosity does not take the flow much away
from the columnar motion). No-slip conditions at the bottom and the wind-stress
at the surface essentially break down the two-dimensional character of the motion
and introduce three-dimensional effects that, although limited in a thin boundary
layer, can influence also the interior flow on a long time scale.

Wind-stress effects are due to the rotation of the tank inside the laboratory
air, that is at rest; they are negligible if the rotation is not fast, and limited to a
very thin layer. Usually, experiments on barotropic flows do not deal with surface
phenomena, thus wind-stress is not taken into account. It is also possible to reduce
it by covering water with a buoyant curtain, except for the measurement area.

The boundary layer next to the solid bottom is produced by the fact that the
velocity vector must vanish at z = 0; inside a thin Ekman layer, a balance between
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pressure gradients, Coriolis and viscous effects is established, while temporal and
nonlinear terms are negligibly small. The thickness of the bottom Ekman layer is
given by (see e.g. Pedlosky, 1987, p.177):

�E =

�
2�

f

�
1=2

; (2.1)

where I have now defined the (vertical) Ekman number as two times the definition
given in (1.8):

Ek =
2�

fD2
; (2.2)

with f = 2
 and D the vertical length scale, as in the shallow-water model dis-
cussed in section 1.2.

In laboratory experiments, the Ekman number is usually very small (Ek �
O(10

�4
), implying that the Ekman layer thickness is also very small compared

with the total fluid depth, since �E = D

p
Ek. Anyway, this thin layer influences

the interior flow on a characteristic Ekman time scale, whose expression is given
by:

TE =
2

f

p
Ek

� Dp
�


: (2.3)

This is due to the fact that, when the interior flow is not spatially uniform,
the flow within the Ekman layer induces a non-zero vertical velocity on top of the
Ekman layer, which is proportional to the relative vorticity in the interior (Ekman
pumping, see e.g. Pedlosky 1987, section 4.5):

wjz=�E =
1

2
�E�: (2.4)

This in turn implies that fluid is exchanged between the Ekman layer and the in-
terior, giving rise to what is called Ekman blowing/suction of fluid, namely the
entrainment or detrainment of fluid from the Ekman layer to the interior or the
contrary, according to the sign of relative vorticity. When the vorticity is posi-
tive, there is pumping of fluid from the boundary layer, thus squeezing the fluid
columns; on the other hand, when the interior flow has negative relative vorticity,
there is suction of fluid towards the boundary layer, thus stretching the flow. In
both cases, the interior relative vorticity decays exponentially, with a characteristic
time scale given by (2.3).

To verify this, it is sufficient to integrate the continuity equation for the shallow-
water model by using (2.4) as bottom boundary condition. One can then obtain that
the horizontal divergence is related to the entrainment or detrainment of fluid:

@u

@x
+
@v

@y
=

1

2
�

p
Ek: (2.5)

By inserting equation (2.5) in the vorticity equation (1.28), and neglecting all non-
linear terms and lateral friction (in order to isolate the bottom friction effects), the
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vorticity equation reduces to:

@�

@t
= �1

2
f�

p
Ek; (2.6)

which implies:
� = �0e

�t=TE ; (2.7)

with the Ekman time scale given by (2.3).
From (2.6) one sees that the effects of the bottom friction can be taken into ac-

count by adding a linear term to the vorticity equation in the shallow-water model
or in the quasi-geostrophic approximation. However, weak nonlinear Ekman fric-
tion terms may induce differences with respect to the linear approximation which
is commonly used.

2.2 Experimental set-up for the study of vortex dynamics

The experiments discussed here are devised to explore the dynamics of an in-
compressible, homogeneous and rapidly-rotating shallow fluid, by using the large
“Coriolis” facility. The fluid layer has a free surface and a flat bottom. Only an
initial forcing is introduced, then the initial energy decays by dissipation.

2.2.1 The ”Coriolis” rotating hydraulic tank of LEGI.

The large rotating ”Coriolis” platform (diameter of 14 meters) of LEGI in Grenoble
supports a circular tank with a diameter of 13 meters and a depth of 1.2 meters (see
a picture of the facility in figure 2.1).

The tank rotation period can be adjusted continuously from about 20 to 1000
seconds and the rotation is counterclockwise. The tank can be filled, up to about
180 tons, either with homogeneous fluid (fresh or salt water) or with stratified
fluid, by using different concentrations of salt. The maximum total weight of the
facility is of the order of 300 tons. The platform is supported in its center by a
spherical thrust bearing, and in its periphery by 23 rollers equally spaced around the
circumference. The platform and the circular tank rotate around a central “pivot”,
used for the electrical and digital networks, as well as to fix a co-rotating structure
from whom flow visualization devices can be hung; a “bridge” is also fixed to the
central pivot and it is used for people to manage the experiments. The discrepancy
from the vertical is about 3 � 10�6 rad.

Water temperature and salinity of water are stabilized and controlled with high
precision, due to the thermal inertia of such a large amount of fluid. Water is
introduced from the bottom while the table is rotating. In stratified experiments
fresh water is introduced first, followed by salt water. In order to avoid excessive
mixing, the tank is filled in approximately 4-5 hours. Additional 2-3 hours are
allowed for the fluid to spin up to approximate solid body rotation; residual motions
in the tank, due to convection and wind stress effects, are estimated to be of the
order of 0:5 cm/s.
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Figure 2.1: The ”Coriolis” rotating tank of the Laboratoire des Ecoulements Géophysique et In-
dustriels in Grenoble (France).

2.2.2 The study domain

For the present experiments, we did not use the whole tank: simple boundary con-
ditions for the study domain are obtained by using a closed rectangular channel,
8.4 m long and 4 m wide, placed in a off-diameter position in the “Coriolis” tank.
In this way we reduce the length scale of the flow, but this choice allows to com-
pare the experiments with numerical simulations, which are usually performed in
simple square or rectangular domains. Furthermore, the presence of the central
pivot in the tank would have constituted an obstacle in the study domain, leading
to the possible creation of wakes in the flow, if the whole circular tank had been
used. Sketch in figure 2.2a provides a top view of the tank, of the channel and of
the study domain, while picture 2.3 shows the rectangular channel and the ”rake”
used to generate the initial forcing.

2.2.3 Generation of the initial conditions

We generate quasi-random initial condition by moving forward and backward a
rigid frame of equally spaced, vertical flat teeth, that we call the ”rake.” Each tooth
has a height of 1 m. The reason for the double passage is to create initial conditions
as random and homogeneous as possible. The first passage of the rake, in fact, cre-
ates some so-called von Karman’s streets of small-scale wake vortices; the second
passage destroys the vortices already formed and creates new ones, adding random
turbulent components to the flow.
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Figure 2.2: Top view (a) and cross section (b) of the rotating tank with the experimental setup. In
the top view, the channel and the study domain are shown. The square area depicted in figure is the
camera view field, and the two oblique lines indicate the edges of the laser sheet. In the cross section,
I also show a sketch of the ”rake”.

The initial input of energy occurs at a length scale which depends on the spac-
ing between the rake teeth and the individual tooth width. The horizontal spac-
ing between two neighboring teeth is chosen to be either 17.5 or 35 cm and the
tooth width is respectively 5 or 10 cm. Since the rake has a total length equal to
the smaller side of the rectangular tank, a total of 18 or 9 vertical teeth are used.
Figures 2.2b and 2.3 provide images of the system. The teeth spacing and width
determine also the initial size of small-scale vortices.

The initial quasi-random turbulent field is then generated by a computer-controlled
movement of the rake along the tank, obtaining what we call ”rake turbulence”, i.e.,
a quasi-two-dimensional analog of ”grid turbulence.” Of course, the initial turbu-
lence has a three-dimensional structure anyway, and it is only the rotation of the
system that eventually generates an almost two- dimensional motion at later times
(after some minutes).

Together with the above mentioned method for creating initial, quasi-random
turbulence, we use also a method specifically designed for generating a vortex in a
specified position in the study domain. This method uses a cylinder with diameter
of 1 m, that is hanged from a small rotating hand-crane, allowing to lower it in the
water at pre-determined positions in the channel. The cylinder is equipped with
four rotating flat blades that allow for spinning up the water inside the cylinder,
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Figure 2.3: Picture of the rectangular channel and of the “rake” used to generate the initial quasi-
random forcing of the fluid.

with a period corresponding to the desired turnover time of the vortex. The cylinder
is then lifted up slowly, and a vortex is created into the turbulent flow. With this
method, it is impossible to obtain a pure cyclonic or anticyclonic vortex, due to
zero mean circulation in the flow, and for cyclonic rotation inside the cylinder a
tripole is generally formed.

2.2.4 Parameters of the experiments

Different values for the control parameters of the flow are obtained by varying the
speed of the rake, the teeth spacing and the rotating period. This leads to different
values for the initial Rossby and Reynolds numbers, which are summarized in Ta-
ble 2.1. Here, the Rossby number is defined as Ro = U=2
L and the Reynolds
number is Re = UL=�, where U is the velocity scale of the flow, L is the horizon-
tal length scale, 
 is the angular velocity of the tank, � is the kinematic viscosity of
water (� = 10

�6 m2/s). In order to estimate the initial value of these numbers, we
use the speed of the rake as the velocity scale and the mean of the spacing between
two rake teeth and their width as the length scale. Later on, the dominant length
scale becomes the vortex radius (that is larger than the rake spacing and the tooth
width), the velocity becomes smaller due to dissipation, and the Rossby number
decreases, down to an order of O(10�1).

The water depth in the experiments is D = 90 cm; the Ekman number defined
in (2.2) is thenO(10�5), leading to a thickness of the bottom Ekman layer of a few
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Table 2.1: Parameters of the experiments.

millimeters, and to an Ekman time scale of about one hour. The influence of the
bottom friction is then negligible in these experiments, which are performed for 40
minutes each (corresponding to more than 50 rotations of the tank). We have also
performed some experiments by using a water depth of 35 cm, in order to see the
effects of a smaller Rossby deformation radius (R =

p
gD=2
); in this case, the

Ekman time scale reduces to about 20 minutes, leading to a rapid decay of vorticity
which slows down or even blocks the self-organization of turbulence. Therefore, it
is difficult to see the effects of the Rossby deformation radius, which reaches the
minimum value of 7 m in our experiments.

2.2.5 Observation and measurement techniques

In order to obtain qualitative and quantitative measurements of the Eulerian charac-
teristics of the flow, two techniques have been adopted: Particle Image Velocimetry
(PIV) and Laser Induced Fluorescence (LIF).

Particle Image Velocimetry

Particle Image Velocimetry (also called Digital Particle Image Velocimetry to point
out the fact that it uses digital images of the flow) is used to measure the instan-
taneous velocity field in a planar section of the flow. The technique consists es-
sentially in determining the local displacements of patches of small passive tracers
over a sufficiently small time interval in such a way that the measured mean ve-
locities of the patches provide a close estimate of the global instantaneous velocity
field. See Raffel et al. (1998) for a review on PIV technique, and Jambunathan
et al. (1997), Westeerweel et al. (1997), Scarano & Riethmuller (1998, 1999a,
1999b) for recent improvements on the processing algorithms.

For the use of the PIV, we adopted the following experimental configuration:
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� a continuous 8W Argon laser source with a wavelength of 488 nm (green
light),

� a deflecting mirror (with an oscillation frequency of 120 Hz) in order to
expand the laser beam into a laser sheet either in the horizontal or in the
vertical plane. The sheet thickness is between 5 and 10 mm,

� a dual channel cross-correlation Kodak Megaplus camera (model ES 1.0)
with a CCD sensor having a pixel array of 1008(H)�1018(V) and a mini-
mum pulse separation of 5 �s,

� a personal computer equipped with a frame grabber and a very fast hard disk
in order to collect and store the images at the maximum available frame rate
(30 Hz).

The experimental set-up of this visualization apparatus is shown in figure 2.4, and
the position of the (3.05�3.05) m2 camera view field is shown in figure 2.3a.

Figure 2.4: Experimental set-up for the use of PIV and LIF visualization techniques. A laser
produces a coherent beam which is expanded in a sheet by using a deflecting mirror. Another mirror,
set at 45 degrees with respect to the ground, is used to expand the sheet horizontally. The horizontal
laser sheet may be positioned at different vertical levels by acting on the moving optical system.
During the experiments, we have positioned the sheet about fifteen centimeters below the water
surface, in order to avoid wind-stress effects. A CCD camera captures images of a portion of the
flow illuminated by the laser sheet, and the binary data are sent to a Personal Computer where they
are stored, and processed afterwards.

In order to take images of tracers by the CCD camera, the flow is seeded uni-
formly with a mixture of 60 � Orgasol and 150 � Optimage particles (with a nom-
inal density of about 1.02 g/cm3). Special attention is paid to determine the nu-
merical density of seeding particles (’seeding density’) in the channel, in order to
obtain images of the flow with an optimum number of particles per pixel (ppp).
Fincham & Spedding (1997) produce a plot of the optimum seeding density versus
particle diameter in the images for strong and weak shear. The diameter of the

45



image of the particles we use is d �= 3 pixels and shear can be strong in the circu-
lation cells around vortex cores. Based on the above estimate, we select a density
of N �= 0:1 ppp.

In the experiments described here, we use the cross-correlation technique to
obtain particle displacements from images of the seeded flow. To this end, on pre-
selected times we record a burst of images, i.e. a series of frames containing the
particle positions at different but closely-spaced times. The total recording time for
each experiment is 40 minutes. During this period, a total of 80 bursts are recorded,
at intervals of 30 seconds. Each burst is composed by 4 image frames taken with
different time delays, aimed at having several possible combinations of particle
displacements. This is designed to allow for choosing the best pair of frames during
the processing phase. At the beginning of the evolution, when the velocities are
high, we prefer to use frames that have a small time separation, while on later times
we prefer to use frames with a larger time separation. In addition, time delays are
linearly increased during each experiment, to approximately compensate for the
turbulence decay and the consequent velocity decrease.

The Correlation Image Velocimetry (CIV) algorithm by Fincham and others
is then used to obtain the Eulerian velocity on a grid by processing the raw PIV
images of the particles in the fluid. This algorithm incorporates advanced features
that improve the performance and allow for obtaining accurate values for the ve-
locities: the decoupling of the interrogation window from its fixed location in the
first image to any arbitrary location in the cross-correlated second image, inside
a search box; the possibility of performing a hierarchical scheme of multi-passes
with increasing spatial resolution; the on-line correlation peak averaging of Hart
(1998) for reducing the wrong vectors. See Fincham et al. (1991), Fincham &
Spedding (1997) and Fincham & Delerce (2000) for details. Derived quantities,
such as vorticity or horizontal divergence, can then be calculated from the velocity
field using local splines.

The experiments carried out in the ”Coriolis” rotating tank involve a large cam-
era view area, larger than that usually adopted in PIV experiments; due to this char-
acteristic, the available resolution of velocity fields is determined not only by in-
trinsic fluid dynamical limits (i.e., the minimum length scale of the flow for which
the hypothesis of a uniform motion of tracer patches is still valid, or the numeri-
cal density of seeding), but also by strong technical limits: the camera optics, the
light sensibility and the pixel resolution of CCD, the tracer size compared to the
distance of the camera from the visual plane. The difficulties of optimizing large
scale PIV experiments influence the final resolution of the data. Nevertheless, the
possibility of performing a hierarchical scheme of multi-passes, offered by the CIV
algorithm, and the use of 50% overlapping of the interrogation windows, allows to
attain a maximum resolution of 3.6 cm, which means that the velocity fields over
the physical area of 3:05 � 3:05 m have a maximum resolution of 80 � 80 grid
points (a narrow band at the edges of the PIV images is, in fact, not available for
the cross-correlation analysis, due to the possible entrance or exit of tracers through
the edges of one of the two cross-correlated images). Higher resolution are no more
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reliable.

Outlier detection and filtering in PIV

An important point is the possible residual presence of wrong vectors (also called
”outliers”) in the velocity field at the end of each correlation step, also after use of
Hart’s detection and correction in the first pass. These outliers have to be detected
and filtered by the use of automatic numerical procedures before each subsequent
pass and before calculating of the derivatives. I have addressed the problem of
outlier detection and filtering by developing an algorithm, additional to the main
CIV algorithm, that improves their detection. The most used algorithms for the
detection of an outlier need to evaluate the mean (or median) of its neighbours,
together with the standard deviation, and use the latter as a threshold value for
the difference between the interrogated vector and the mean (or median) (see, e.g.,
Raffel et al. 1998 and Westeerweel 1994). However, the standard deviation itself
can be affected by errors due to the possible presence of outliers in the nearby
vectors, or it can be so small that very slight differences with respect to the mean
or median of nearby vectors are rejected. To obviate this problem, I have tried
different solutions; one of them is to use an appropriate, local, adaptive threshold
which is not simply given by the standard deviation multiplied by a constant, but it
is a more realistic function of the standard deviation itself, satisfying two requests:
first, when the standard deviation is small, the threshold should be larger; second,
when the standard deviation is large (indicating a possible prsence of outliers in the
nearby vectors), the threshold should be smaller, apart some corrections due to the
presence of strong gradients in the flow.

The simplest proposed expression for the threshold is:

Thr = (A exp(�B�) + C)�; (2.8)

where � is the standard deviation, calculated by using the eight nearby vectors of
the interrogated one, and A, B, C are constants to be determined in an adaptive way,
by considering the statistical and/or the fluid dynamical properties of the flow.

A simple way is, for each velocity field, to evaluate the value which corre-
sponds to the maximum of the Probability Density Function (PDF) of the standard
deviation, and to use it for determining the maximum of the threshold function; this
leads to an expression for the constant B. The constant C may be locally determined
by evaluation of gradients nearby an interrogated vector. Lastly, the constant A may
be fixed in such a way that the threshold has a certain maximum value, e.g. 3�max,
where �max is the value of the standard deviation at the threshold maximum.

The application of this algorithm to the PIV velocity fields recorded in the
present experiments improves the detection of outliers and, above all, it improves
the percentage of valid vectors which are detected as wrong vectors by usual vali-
dation algorithms.

Another algorithm has been developed for the detection of outliers in multi-
passes PIV. It simply uses the lowest order, low-resolution velocity field (validated
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for instance by using the technique described above) as a ”pattern” for the higher-
resolution field; vectors which have large differences with respect to the corre-
sponding interpolated vector in the low-resolution field, are rejected.

The velocity field is then interpolated by local splines in the positions where
vectors have been filtered out, in order to get a field on a regular grid.

Laser Induced Fluorescence

Here I recall briefly the use of Laser Induced Fluorescence. LIF is a technique
that we have used only in order to visualize the instantaneous flow structures and
to tell apart the vortex cores from the turbulent background. The arrangement for
using LIF is the same used for PIV; the difference is in the seeding, which for LIF
is Disodium fluorescein (green dye) with an absorption wavelength of 500 nm and
an emission wavelength of 535 nm. The light recorded on the digital images is not
the scattered light, as for PIV particles, but the fluorescent light emitted during the
transition of electrons in the dye molecules from the lowest vibrational level in the
excited singlet state to the non-excited state.

See Walker (1987) and Aanen et al. (2000) for details on this technique, which
is efficiently used for passive tracer concentration measurements, since the fluores-
cent light emitted by the dye molecules (thus, the image intensity) is approximately
a linear function of the dye concentration.

2.2.6 Data collection

During the experiments we collect two types of raw data:

� photographic images and sequences of digital images of the fluid seeded with
fluorescein. The flow structures are visible without any post-processing. It
is possible to visually follow the time evolution of the coherent vortices and
the displacement of the float-like tracers;

� sequences of digital PIV images of the fluid seeded with microscopic par-
ticles. These images need post-processing in order to extract quantitative
data on Eulerian velocity, vorticity, kinetic energy, horizontal divergence and
other dynamical variables.

In order to get direct Lagrangian information, we also use a few float-like trac-
ers, whose description is postponed to Chapter 3; digital images of the positions of
these tracers are available, and post-processing techniques (float tracking) can be
used in order to extract quantitative information on their trajectories.

The sequences of velocity fields obtained with PIV processing form a large
data set available for detailed studies of the Eulerian properties of the vortices with
different values of the Rossby and Reynolds numbers, as well as for studies of
passive tracer transport (which is the topic of Chapter 3).
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2.3 The evolution of the quasi-2D turbulent field

In this section, I refer to an experiment carried out by using: tank rotation period
T = 50 s, rake speedU = 6:5 cm/s and rake spacing between two teeth l = 35 cm.
This corresponds to an initial Rossby number Ro = 1:1 and a Reynolds number
Re = 15000. Comparisons between different experiments are discussed in the
next section.

After the passages of the ”rake”, the flow is almost unstructured; small scale
vortical patches, produced as wakes by the rake teeth, interact each other and un-
dergo merging phenomena, which lead to a rapid increase of size. Figure 2.5 pro-
vides a sequence of pictures of the flow obtained by using LIF; see figures 2.6, 2.7
and 2.8 for the fields of velocity, vorticity, kinetic energy and Q-value at different
times, obtained by using PIV. During this first stage, the turbulence has a three-
dimensional structure, as we have verified by illuminating the seeded flow with
vertical laser sheets.

After some minutes (between 5 and 8, depending on the rotation period), indi-
vidual coherent vortices emerge as structures distinct from the turbulent, unstruc-
tured background, and their following evolution can be clearly tracked. The sep-
aration between vortices and background, then, occurs very early after the initial
energy input, where ”early” means that the time scale at which this separation
occurs is very small when compared to the time scale of evolution of the freely-
decaying turbulent flow: after more than one hour, in fact, the flow does not yet
come back to the state of rest, and evolution is still active, although the velocities
are feeble.

During the first stage in which vortical patches and turbulent background are
not clearly distinct, an important role is played by the three-dimensional compo-
nent of turbulence: for an initial Rossby number of order one, anticyclonic1 vor-
ticity filaments subject to a straining field in a quasi-2D flow are destabilized by
rotation, whereas rotation has a stabilizing effect (compared with the non-rotating
case) on cylonic vorticity filaments (Lesieur 1993, p. 81). This implies that, after
the separation between vortices and background, cyclones are more abundant than
anticyclonic vortices, which have been destabilized before the self-organization of
the turbulent field could reinforce them. This effect has been verified in all the
experiments we have performed, with different Rossby and Reynolds number: al-
ready at early times, there are mostly cyclones in the flow, and the few anticyclones
are generally weaker. This effect is strongly different from the results obtained
numerically by using both a quasi-geostrophic model (in which there is no asym-
metry at all between cyclones and anticyclones) and a shallow-water model (which
predicts an asymmetry, but favours anticyclonic vortices), and is due to the initial
three-dimensionality of the flow. When the fluid is very shallow (in the case with
35 cm depth, for instance), also the Ekman layer contributes to destabilizing an-

1I remind that ”cyclonic” and ”anticyclonic” are terms referred to the rotation of the reference
frame: a cyclonic motion occurs in the same direction as the reference frame rotation, while it is the
contrary for an anticyclonic motion.

49



ticyclonic vortices, as pointed out by means of experimental evidence by Chabert
D’Hieres et al. (1989). The combination of these two effects leads to a total lack
of fully-developed anticyclones in experiments with very shallow water.

The second stage of evolution of the turbulent flow is, on the contrary, almost
two-dimensional, and it can be described by means of the quasi-geostrophic model
in the case of small Rossby numbers (Ro = O(10

�1
)), with possible ageostrophic

effects when the Rossby number is larger.
Particular care is devoted to test the hypothesis of quasi two-dimensional flow

at this stage. A qualitative confirmation of the two-dimensionality of the flow is
obtained during the experiments, as the horizontal laser beam used to illuminate the
flow, positioned at different vertical levels in the fluid, shows the same structure on
different horizontal planes (a fact that confirms the columnar structure of the flow).
More quantitatively, the estimated values of the horizontal divergence are close to
zero, as discussed further below. This happens for both the slower (period of 100
s) and the faster (period of 50 s) tank rotation speed and it becomes more clear as
the turbulence evolves.

During this stage, coherent vortices carry most of the energy and enstrophy
of the flow, and interact with each other mainly by merging processes which in-
crease their size up to a diameter of order one meter (one third of the camera
view field). This stage has a long duration, more than half an hour if the initial
Reynolds number is higher than 10000, and it is characterized by advection of
vortices throughout the turbulent flow, induced by the field created by the other
coherent structures. This advection of vortices increases the probability of interac-
tions, which are mainly reduced to merging or straining, since cyclone-anticyclone
coupling is not possible due to the lack of anticyclonic vortices. The turbulent
field becomes more and more inhomogeneous: vortices with increasing size are
separated by large unstructured areas of low energy.

As time goes on, dissipation reduces drastically the energy in the system; at
this point the background has negligible velocity, and the energy is concentrated in
large scale rotating vortices. Close interactions among coherent vortices are less
and less likely due to the reduction of their mutual advection. The only motion
which persists is the slow rotation of fluid inside vortices, still visible after more
than ninety minutes after the start of the experiment, if the Reynolds number is
sufficiently high.

2.4 Characteristics of the turbulent field at different
Rossby and Reynolds numbers

I compare here four different experiments, characterized by the following initial
parameters:

1. Re = 29000 and Ro = 2:3, obtained by using: tank rotation period T = 50

s, rake speed U = 13 cm/s and rake spacing l = 35 cm.
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Figure 2.5: Sequence of flow visualizations obtained by LIF. Each snapshot represents the struc-
ture of the turbulent flow in a 3� 3 m2 area placed at a few centimeters below the surface. The time
interval between the snapshots is 50 s and the first snapshot is taken 6 min after the passage of the
rake. In this experiment, the water depth is 90 cm and the rotation period is 50 s (Re = 15000 and
Ro = 1:1). The white dots are float-like tracers, whose shadows are visible as black straight lines.
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Figure 2.6: Sequence of velocity (vectors) and vorticity (color) fields obtained by PIV for an
experiment with Re = 15000 and Ro = 1:1. Velocity unit is cm/s and vorticity unit is s�1. The
resolution of the fields is 3.6 cm, although the velocity field in figure is plotted each 7.2 cm. The
description of the evolution of the fields is in the text.
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Figure 2.6: (continued)

53



Figure 2.7: Same as in figure 2.6, but for velocity (vectors) and kinetic energy (color) fields. The
unit of the kinetic energy is (cm/s2).

54



Figure 2.7: (continued)

55



Figure 2.8: Same as in figure 2.6, but for velocity (vectors) and Q-function (color) fields. The unit
of the Q -function is (s�2).

56



Figure 2.8: (continued)
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2. Re = 15000 andRo = 2:3, obtained by using: tank rotation period T = 100

s, rake speed U = 6:5 cm/s and rake spacing l = 35 cm.

3. Re = 7000 and Ro = 2:3, obtained by using: tank rotation period T = 50

s, rake speed U = 6:5 cm/s and rake spacing l = 17:5 cm.

4. Re = 15000 and Ro = 1:1, obtained by using: tank rotation period T = 50

s, rake speed U = 6:5 cm/s and rake spacing l = 35 cm.

2.4.1 Energy, enstrophy and horizontal divergence

Figures 2.9, 2.10 and 2.11 show, respectively, the time evolution of the total kinetic
energy, the total enstrophy and the mean square divergence in logarithmic scale for
the four cases mentioned above.
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Figure 2.9: Time evolution of the total kinetic energy for four different experiments: Re = 29000
and Ro = 2:3 (solid line), Re = 15000 and Ro = 2:3 (dotted line), Re = 7000 and Ro =
2:3 (dash-dot line) Re = 15000 and Ro = 1:1 (dashed line). The straight solid line in figure is
proportional to t�1 .

The total kinetic energy is defined by the integral over the study domain (nor-
malized by the domain area) of the square velocity, whereas the total enstrophy
is the integral of the square vorticity. Both the total kinetic energy and the total
enstrophy show approximately the same behaviour for the different cases consid-
ered: after an initial slow decrease, 10 minutes after the start of the experiments
the kinetic energy shows a trend proportional to t�1 and the enstrophy has a trend
proportional to t�3=2. The mean square horizontal divergence is proportional to
t
�1 from the beginning. Note that fast rotation (Ro = 1:1 with respect to the case
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Figure 2.11: Same as in figure 2.9, but for the mean square horizontal divergence. The straight
solid line in figure is proportional to t�1.

withRo = 2:3) increases the amount of energy and enstrophy in the system, which
is also large as the Reynolds number is high.

An important indication about the quasi two-dimensionality of the system is
given by the ratio between the mean square horizontal divergence and the mean
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Figure 2.12: Time evolution of the ratio C between the mean square horizontal divergence and
the mean enstrophy

enstrophy, which is plotted in figure 2.12. As one can see, five minutes after the
arrest of the rake the square horizontal divergence is one order of magnitude lower
than the mean enstrophy in all the experiments considered (both slow and fast
rotation and low and high Reynolds number), providing a proof of the quasi two-
dimensionality of the flow. Note that the values of the horizontal divergence can
be overestimated due to the possible presence of spurious vectors in the lower part
of the velocity fields, where the laser illumination of the flow is less efficient.

2.4.2 Cross-sections of kinetic energy, vorticity and Q-function in vor-
tices

Figures 2.13-2.16 provide cross-sections of different quantities in vortices that
emerge in the four cases described above. Cross-sections are given at two different
times, i.e., 10 minutes and 40 minutes after the arrest of the rake.

The overall aspect of the different cross-sections is similar to what is found
in numerical simulation of two-dimensional turbulence (see e.g. Elhmaidi et .al
1993). Nevertheless, differences are clear among the different experiments. High
Reynolds numbers and fast rotation (small Rossby number) lead at late times to
vortices that still have a high peak of vorticity and well defined profiles of kinetic
energy and Q-function, as well as large sizes (up to 80 cm in the cases presented
here).

It is clear, however, that the vorticity peak decreases as time goes on, and re-
duces more than one half. Another characteristic that can be seen in the figures
(but also in the Q-value fields at late time in figure 2.8) is that there is no a clear
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Figure 2.13: Cross-sections of vorticity (solid line), kinetic energy (dashed line) and Q-function
(dash dot line) in a vortex at two different times for the experiment with Re = 15000 and Ro = 1:1.
Note that the values of kinetic energy and Q-function are multiplied by 10.
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Figure 2.14: Same as in figure 2.13 for the experiment with Re = 29000 and Ro = 2:3
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Figure 2.15: Same as in figure 2.13 for the experiment with Re = 15000 and Ro = 2:3
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Figure 2.16: Same as in figure 2.13 for the experiment with Re = 7000 and Ro = 2:3
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circulation cell around the vortices, in all the cases discussed here (above all at late
times, there are no rings of high positive Q around vortex cores with high negative
Q-values). The strain field around the vortex cores, therefore, seems to be weak in
comparison with numerical simulations of two-dimensional turbulence. This might
have an effect on the dispersion laws of passive tracers in quasi two-dimensional
turbulence, as anomalous dispersion is often related to the presence of circulation
cells around vortex cores (see section 3.1).
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Chapter 3

Transport of passive tracers by
coherent vortices: a laboratory
view

Lagrangian dynamics of passive tracers and transport by coherent vortices in lab-
oratory experiments is the central topic of this chapter. Tracers consist both in
float-like tracers seeded in the fluid and numerical tracers whose trajectories are ob-
tained by integration of the Lagrangian equation of motion, by means of a pseudo-
experimental technique that uses experimental Eulerian fields as input data. Trap-
ping of passive tracers in vortex cores and the impermeability of vortex edge to
inward fluxes of tracers are discussed.
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3.1 Numerical background on transport by coherent
barotropic vortices

Coherent vortices have been studied numerically from both the Eulerian and the
Lagrangian points of view. The Lagrangian approach is used to examine the trans-
port properties of passive scalars and/or passive tracers1 in turbulent flows charac-
terized by the presence of fully-developed vortices. In particular, coherent vortices
have been shown to be very efficient in trapping passive tracers for long times
and transporting them over large distances (Elhmaidi et al. 1993, Babiano et al.
1994, Paparella et al. 1997). Furthermore, vortices show a strong impermeability
to inward fluxes of particles, due to the strong gradient of vorticity at their edges
(McIntyre 1989).

Figure 3.1 shows these key properties of vortices. In panel (a), two ensembles
of passive tracers are seeded inside a two-dimensional, freely decaying, turbulent
vorticity field, whose initial conditions are the same as in figure 1.3a; 1800 yellow
tracers are seeded inside the core of an anticyclonic vortex, whereas 1800 green
tracers are seeded in the turbulent background. After a long time, compared to
the eddy turnover time, the evolved distribution of particles in panel (b) shows
that particles seeded in the vortex remained there during the turbulent evolution,
whereas particles seeded in the background spread throughout the field without
entering any vortex.

Coherent vortices act as ”islands” of regular motions, in contrast with the La-
grangian chaoticity which characterizes the turbulent background (Babiano et al.
1994), and passive tracers display an almost null radial relative dispersion2 and
a linear azimuthal dispersion in vortex cores (Provenzale et al. 1999). This is
shown in figure 3.2, which represents a zoom of an anticyclone in the field shown
in figure 3.1, seeded with passive tracers placed on a radial line. After a (nondi-
mensional) time T = 13, almost no radial dispersion is evident, while one can see
azimuthal dispersion due to the differential rotation inside the vortex core. Two
radially nearby particles, therefore, undergo circular motions around the vortex
centre, lying almost always on the same orbits, but with slight different azimuthal
velocities.

Numerical simulations have also pointed at the presence of coherent vortices
(and, in particular, of the circulation cells around vortex cores) to interpret the
anomalous dispersion regime at intermediate times, which has been found in the
absolute dispersion3 curves in two-dimensional turbulence, which is neither bal-

1An advected scalar is a general scalar entity, such as the concentration of dye, which satisfies an
advection-diffusion equation. Tracers, on the other hand, are individual particles, ideally point-like
and massless, whose equation of motion is given by the equivalence between the Lagrangian and the
Eulerian velocities at the tracer positions. They are also called Lagrangian tracers or Lagrangian
particles. The attribute ”passive” means that the dynamics of the scalars or of the tracers does not
influence the dynamics of the flow

2Relative dispersion is defined as the mean square displacement at time t between a pair of ini-
tially nearby particles.

3Absolute dispersion (also called single-particle dispersion), A2(t; t0), provides a measure of
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Figure 3.1: Two ensembles of passive tracers are seeded in a freely decaying, 2D turbulent field
with fully-developed vortices: 1800 yellow tracers are seeded inside the core of an anticyclonic
vortex, while 1800 green tracers are seeded in the turbulent background (panel a). The evolved
distribution in panel (b), after a (nondimensional) time T = 13, shows that vortex core are able to
trap passive particles for a long time, compared to the eddy turnover time, and are impermeable to
inward fluxes of particles from the background. The numerical simulation is performed in a doubly
periodic square domain with size 2� and using a time step dt = 10�3. The initial conditions for the
vorticity field are the same as in figure 1.3a.

Figure 3.2: Zoom of an anticyclonic vortex in the vorticity field shown in figure 3.1b. The vortex is
initially seeded with passive particles placed on a radial line. After a (nondimensional) time T = 13,
tracers inside the core show almost no radial dispersion but only azimuthal dispersion due to the
differential rotation.

the mean square displacement of individual particles at a certain time t, as function of their initial
positions at time t0 . The average is calculated over the particle ensemble.69



listic (A2
(t) / t

2) nor Brownian (A2
(t) / t), but is characterized by a trend

A
2
(t) / t

5=4 (Elhmaidi et al. 1993).

3.2 Experimental Lagrangian data

The experiments carried out in the ”Coriolis” rotating tank have also the purpose
of verifing some properties of transport by coherent vortices from the laboratory
point of view. In order to do this, together with the Eulerian data provided by the
PIV technique, we have collected Lagrangian data provided by both float-like trac-
ers (direct Lagrangian data) and numerical tracers whose trajectories are obtained
by integration of the equation of motion by using the experimental velocity fields
(indirect Lagrangian data).

Float-like tracers are composed by a buoyant stick and an approximately el-
lipsoidal container in the lower part (the ”balloon”), see figure 3.2. Iron pellets
are placed inside the balloon, in order to equilibrate the float at a certain depth.
We used floats with balloons at 20 cm depth. The particular shape of these floats
avoids ”sticking effects” due to surface tension. The floats are furnished with a
fluorescent upper bright stick to visualize their path and to record their positions
by the camera. The frame rate acquisition is in this case higher than for PIV, up to
one frame every 5 seconds, but necessarily the total acquisition time is shorter (up
to 15 minutes).

Although the size of these tracers is not negligible, they can provide important
qualitative information on particle transport. Their inertia, as pointed out in the
last chapter, is important above all in a short, initial transient of time after they
are released in the fluid (with null initial velocity); afterwards, their dynamics ap-
proaches the dynamics of Lagrangian tracers, except for small scale motions (large
wave numbers) or high frequency motions that are filtered out. The experiments
performed in the large-scale ”Coriolis” tank deal with properties of the turbulent
flow at small wave numbers and low frequencies, and the tracers we use are able to
catch much of the dynamics in the interesting range.

Float-like tracers are used above all in combination with LIF technique, when
coherent structure are well recognized; they cannot be used in combination with
Particle Image Velocimetry, because of the possible shadow effects that arise when
the stick or the balloon below the water surface crosses the laser sheet. The vortices
or the turbulent background are seeded with these tracers (we have used up to 25
tracers in each experiment) with the aim of studing the impermeability properties
of coherent structures.

Because of the technical difficulties to obtain long sequences of many La-
grangian tracer trajectories with high sampling frequency in a large-scale exper-
iment, the technique we use to obtain trajectories of passive tracers is pseudo-
experimental. The idea is to use the time sequences of the Eulerian velocity fields
provided by PIV, interpolated in time and space in order to obtain high frequency
and large wavenumber samples, and to integrate numerically the equation of mo-
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Figure 3.3: Sketch of a float-like tracer used as a Lagrangian tracer. See description in the text. In
the figure, units are in millimeters.

tion for Lagragian tracers:
dX

dt
= u(X; Y; t); (3.1)

where u is the experimental velocity interpolated in the position X = (X; Y ) of
the numerical tracer.

This technique is often used to extract Lagrangian data from meteorological
wind field, by interpolating in space and time the Eulerian data provided every
six-twelve hours over a certain region (see Paparella et al. 1997 for a geophysical
application of this technique to the Antarctic polar vortex). One of the crucial point
for the use of this technique is the temporal resolution of the sequence of the veloc-
ity fields. The experimental, original sampling has been limited to a frequency of
1/30 Hz, due to data storage problems occurring for very long sequences. This tem-
poral resolution is not sufficient for smooth integration of equation (3.1). The cri-
terium I use in order to evaluate the requested temporal resolution is an equivalent
of the Courant-Friedrichs-Lewy (CFL) stability criterium: the minimum sampling
frequency that is requested for a certain experiment is given by:

1

�t
� juj

�x
; (3.2)

where u is the maximum value of the velocity components and �x is the grid
spacing. This criterium ensures that the position of each tracer does not change
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more than a grid step during every time step. For the experiments described here,
having a grid resolution of 3.6 cm, �t = 1 s has been determined as a sufficient
temporal resolution.

Both the temporal and the spatial interpolation is performed by using a spline
algorithm, respectively cubic and bicubic. The reason for this choice lies in the
smoothness of the interpolating spline function, which is also smooth in the first
derivative (gradients). The time integration of the equation of motion for La-
grangian tracers is performed by using a third-order Adams-Bashford scheme.

Both for direct and for indirect Lagrangian data, one big problem is given by
the lack of boundaries in the camera view field. This means that tracers can easily
and rapidly get out of the view field, making very difficult the evaluation of late
time statistics, such as absolute dispersion or maximum Lyapunov exponent. On
the other hand, the distance of the camera view field from the channel walls assures
that boundary effects can be neglected.

3.3 Laboratory results on transport by barotropic vor-
tices

The results discussed in this section and in the following of the chapter concern
some experiments performed with fast tank rotation (period of T = 50 s), medium
rake speed (U = 6:5 cm/s) and coarse rake spacing (35 cm). This conditions
correspond to an initial Rossby number Ro = 1:1 and an initial Reynolds number
Re = 15000. Together with the creation of initial turbulence by means of the rake,
some results obtained by using the cylinder are also discussed.

3.3.1 Impermeability to inward and outward tracer fluxes

The experiments we have carried out in freely-decaying turbulent flows confirm
that coherent vortices have a strong capability of trapping passive tracers for long
times, much longer than the eddy turnover time and comparable with the vortex
life-time. Release of tracers trapped inside a vortex occurs during vortex-vortex
interactions, above all during merging processes (see next section).

Figures 3.4, 3.5 and 3.6 show pictures of vortices seeded with either fluores-
cein or with the microscopic particles used for the PIV. The vortex in figure 3.6 is
generated (inside a background turbulence obtained by means of the rake) by stir-
ring the water inside a cylinder lowered into the channel at a pre-selected position,
as explained in section 2.2. Due to the zero mean circulation into the flow, this
method does not yield, generally, a monopolar vortex, but rather a tripole, at least
at late times.

Trapping and impermeability are evident in figure 3.4, where the core of the
anticyclone in the dipole is seeded with PIV particles (blue bright colour) and the
cyclone is unseeded. Fluorescein is seeded in the background (green colour). The
core of the cyclone remains devoid of fluorescein. This latter does not enter the
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vortex except for molecular diffusion at late times. A similar situation is depicted
in figure 3.5, where fluorescein is released inside the large vortex on the right,
whereas PIV particles are released in the two smaller vortices. Even if the two
smaller vortices are in the process of merging, there is no exchange of material
between the two cores at this stage. Trapping and regular motion of PIV and float-
like tracers are evident in figure 3.6, where tracers are released in an artificially
created vortex which, at this early stage, shows the onset of instabilities at the
edge.

Figure 3.4: A picture of a dipole, where the core of the anticyclone has been seeded with PIV
particles and the cyclone is unseeded. Fluorescein is seeded between vortices. The core of the
cyclone remains devoid of fluorescein. Photo: A. Provenzale.

The fact that tracers seeded inside coherent vortices are trapped for long times
is also evident in figure 2.5 shown in chapter 2, where float-like tracers are rep-
resented by white points. Thus, one can observe that strong tracer trapping takes
place in non-merging vortex cores, and this is associated with a well-defined im-
permeability of the vortex edge to inward and outward tracer fluxes.

The results of the observations are also confirmed by means of the pseudo-
experimental Lagrangian technique. Figures 3.7a and 3.7b show the initial release
of two patches of passive tracers and their evolved distribution at later time. A
total of 1800 tracers (red) are released inside a cyclonic vortex which does not
interact much with the others during the evolution of the turbulent field, whereas
1800 (black) tracers are released into the background. As shown in figure 3.1 for a
numerical simulation, also in laboratory experiments the patch in the vortex core is
trapped for many rotation periods, whereas the patch in the background is stretched
and spread throughout the turbulent field, without entering any vortex.
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Figure 3.5: This picture shows three vortices. Fluorescein is released inside the large vortex on
the right, whereas particles are released in the two small vortices. The background is contaminated
with both fluorescein and PIV particles. No exchange of fluid occurs between the cores of the two
smaller vortices, even if they are in the process of merging. Photo: A. Provenzale.

Figure 3.6: A picture of a monopolar vortex that has been created by using the cylinder with
rotating blades. The tracers inside the vortex core (particles and float-like tracers) display a regular
motion around the center. Photo: A. Provenzale.
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Figure 3.7: In this figure, the initial distribution (a) and the evolved distribution (b) of 3600 pas-
sive numerical tracers seeded inside experimental velocity fields are presented. 1800 (red) tracers
are seeded in a cyclonic vortex core and 1800 (black) in the turbulent background. The evolved
distribution is characterized by trapping of red tracers and spreading of black tracers throughout the
turbulent field, except for vortex cores. The flow in the figure has an initial Rossby numberRo = 1:1

and an initial Reynolds number Re = 15000. The times indicated in figure are evaluated since the
arrest of the rake.
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3.3.2 Regular motion inside vortex cores

As already shown in some previous figure, the motion of passive tracers inside
vortex cores is characterized by regular, circular trajectories around the centre (fig-
ure 3.8 shows a typical trajectory in a cyclone), in contrast with the chaotic nature
of trajectories in the turbulent background.
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Figure 3.8: A typical trajectory of a passive tracer inside a vortex core, obtained by means of the
pseudo-experimental technique.

Regular motion of float-like tracers inside a cyclonic core can be appreciated
in the time sequence of figure 3.9. This figure is a zoom of the upper left vortex
in the sequence of LIF images in figure 2.5, much before the merging process
that it finally participates in. Tracers (white double points) are released inside the
core and, apart for drift effects during an initial transient, they undergo regular
trajectories around the center; differential rotation in the vortex allows for a larger
speed of the most external tracers.

The azimuthal dispersion which characterizes tracers inside a vortex core is bet-
ter shown by reproducing the same initial distributionof tracers as in figure 3.2, i.e.,
a radial line starting from the vortex centre. By means of the pseudo-experimental
Lagrangian technique, a beautiful spiral of tracers is obtained after some time (three
minutes after the release), which also confirms the almost null radial dispersion of
passive particles inside vortices.

3.4 A Lagrangian view of vortex merging

One of the most impressive processes that one can watch when visualizing a turbu-
lent field with fluorescein is, in my opinion, the merging of two same-sign vortices.

76



Figure 3.9: This figure is composed by a sequence of frames taken every 5 seconds. It shows
(during a time interval of 55 s, which corresponds approximately to the eddy turnover time for
the present experiment) the evolution of a cyclone and the deplacements of some float-like tracers
seeded into the vortex core. The double bright point is an effect of the laser illumination; the shadows
indicate the tracer positions. Regular trajectories inside the core are displayed by the motion of the
tracers.

One of these episodes is depicted in the sequence of figure 3.11 by using the LIF
technique, another is represented in figure 3.12 by using the pseudo-experimental
Lagrangian technique. Both of these visualizations, however, do not render entirely
the speed of the process, which can be appreciated only by means of an animation
(otherwise, during a real experiment).

As shown in chapter 2, merging of vortices is the best way to increase vortex
size and to reduce vortex number. Although merging occurs only when two vor-
tices are close enough to each other, there is a large time interval during which
advection of vortices by the turbulent field and the large number of coherent struc-
tures make this process very common. From the Eulerian point of view, merging
is characterized by an initial interaction of two same-sign vortices which start to
exchange material from their edges. A fast circling motion of one vortex around
the other occurs afterwards, up to the complete coalescence of the two structures.

A Lagrangian view of the process is provided by using tracers seeded in one
of the two merging vortices, or fluorescein throughout the turbulent field. Two
main results are evident from figures 3.11 and 3.12. The first one is that during
vortex merging, processes of filamentation lead to the expulsion of tracers out of
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Figure 3.10: Evolved distribution after t = 180 s of a group of 3600 tracers initially placed on a
radial line starting from the vortex centre. Azimuthal dispersion due to differential rotation is evident.

the coherent structures, the second one is that one can clearly distinguish the two
vortex cores as individual entities even after the merging process has completed
and only one vortex remains.

Entering the details, the first stage of the merging is characterized by a sim-
ple interaction of the two vortices which exchange materials through the saddle
point localized in the middle of the line connecting their center (clearly visible in
figure 3.12 at time t = 30 and t = 32:5min). At this early stage, tracers which
pass from one vortex to the other or are ejected into the background come from the
outer shells of the merging vortices (black colour in figure 3.12). This stage can
also evolve into incomplete merging of the two vortices, if the distance between
the vortex centres is above a certain critical value (Melander et al. 1988) or if the
external strain field keeps them apart; in this case, just some material coming from
one vortex becomes part of the other.

If the merging process goes on, the following stage is characterized by stretch-
ing and elongation of one of the two vortices, normally the weaker one. At this
stage, the core of the elongated vortex is still distinct, although tracers belonging
to different shells start to mix together (figure 3.12, t = 34 min). Circling motion
of the two vortices and differential rotation act together to produce vorticity fila-
ments and tracer filaments. The tracers in the filaments do not belong to the inner
shells, confirming that also during merging processes, trapping of tracers in vortex
cores is very efficient (figure 3.12, t = 35 min).

The last stage of the merging is the axisimmetrization of the vortex derived
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from the coalescence of the two original vortices. The final vortex has generally a
larger size, if the two merging vortices have sizes comparable, while the maximum
vorticity is almost conserved. Inside the core, tracers coming from the original
vortices are still separated (although it is no more possible to distinguish the orig-
inal shells). Filaments are released into the turbulent background, where they are
dissipated by viscosity. Only on diffusive time scales the tracer populations of the
two original vortices will mix together.

Experimental evidence, therefore, confirm the results obtained by means of
numerical simulations of barotropic turbulence, and underline the importance of
vortex structures in the overall transport of passive tracers. Vortices in a turbulent
flow are shown to be topological areas with peculiar characteristics with respect
to the turbulence itself, from both the Eulerian and the.Lagrangian points of view.
The discussion on transport properties by coherent vortices will continue through
next chapters, by considering real particles and tracers with finite size and finite
inertia with respect to the fluid.
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Figure 3.11: Sequence of LIF pictures showing the merging process of two cyclonic vortices. The
time step between two subsequent images is 50 s. The experimental conditions are the same as in
figure 3.7.
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Figure 3.11: (continued)
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Figure 3.12: A view of vortex merging by means of the pseudo-experimental technique. The
different panels show different times of the evolution of a patch of (3600) passive tracers seeded
inside a merging cyclonic vortex. Different initial distance from the vortex centre is indicated by
different colours. The experimental conditions are the same as in figure 3.7. The time T = 0

corresponds to the arrest of the rake.
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Figure 3.12: (continued)
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Figure 3.12: (continued)
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Chapter 4

Lagrangian particles and
impurities

Lagrangian particles are ideal neutrally-buoyant elements with infinitesimal size;
their dynamics is described by the equivalence between the Lagrangian velocity at
the particle and the Eulerian velocity of the particle position, and their trajectories
are assimilated to fluid particle trajectories. Real particles embedded in a fluid,
however, have small but finite size, and may have different density with respect
to the surrounding fluid. For these impurities, the equation of motion comes from
Newton’s second law of dynamics. This chapter is devoted to the discussion of the
equation of motion for impurities, to the description of the numerical set-up used to
integrate the trajectories of individual impurities in a barotropic two-dimensional
model, and to review some previous results on impurity dynamics in flows with the
presence of vortices.
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4.1 Fluid elements and Lagrangian particles
versus impurities

Most of Lagrangian dynamics deals with ideal neutrally-buoyant elements which
are considered point-like and massless. The dynamics of such elements is assim-
ilated to the dynamics of fluid particles, therefore the same flow can be viewed as
an evolving field (Eulerian description) or an ensemble of moving fluid particles
(Lagrangian description). The link between the two descriptions is given by the
equality between the Lagrangian velocity and the Eulerian velocity in the position
of the fluid particles:

Uf =
dXf

dt
= u; (4.1)

where Uf (t) is the Lagrangian velocity of a fluid particle whose position is given
by Xf(t), and u(Xf ; t) is the velocity of the Eulerian field at the positionXf .

Given the equation (4.1), it should always be possibile to pass from one descrip-
tion to the other, at least theoretically. Practically, it is possible only for stationary
two-dimensional flows, whereas non-stationary flows displays chaotic Lagrangian
dynamics even if the Eulerian velocity field is very simple (e.g., time periodic) and
non-turbulent; see, for instance, Aref (1984), Aref & Balachandar (1984), Falcioni
et al.(1988), Beloshapkin et al. (1989).

The description of a flow in term of trajectories of fluid elements is only ac-
cessible theoretically and numerically, not always experimentally. Laboratory and
in-situ experiments use tracers which are not fluid elements, but external ”impu-
rities”, although their characteristics approach those of fluid elements: the tracers
have small size with respect to the fluid length scale and they have almost the same
density as the fluid in which they are embedded. Such tracers are called quasi-
Lagrangian particles or quasi-Lagrangian tracers, since they provide Lagrangian
information almost as though they were fluid elements. Nevertheless, they are nei-
ther point-like (they have a finite size) nor massless (they may have small inertia
with respect to the fluid).

The class of small particles with finite size and/or inertia (i.e., density different
from the density of the fluid in which they are embedded), is altogether indicated
by means of the term ”impurities”. Impurities may be such different as quasi-
neutral buoyant tracers used in laboratory experiments (PIV tracers, for instance)
or in in-situ geophysical measurements (floats and drifters in the oceans, balloons
in the atmosphere), but also droplets or bubble in a two-phase flow, dust grains in
the atmosphere, settling particles in turbulent flows or dust particles in the early
solar nebula.

For such particles, equation (4.1) is no more valid. The equation of motion for
impurities comes from Newton’s second law of dynamics, where one has to take
into account all the forces which can act on a small, foreign particle embedded in
a viscous advecting flow:

m
d2X

dt2
= F(U;u); (4.2)
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here, m is the mass of the impurity, X and U(t) are, respectively, its position and
velocity, u is the Eulerian velocity and F is the sum of the forces acting on the
impurity (which are usually functions of the impurity velocity and the Eulerian
velocity).

It is evident that the dynamics of impurities can be totally different from the
dynamics of fluid elements, as well as from the dynamics of ideal Lagrangian trac-
ers. Eulerian description of the flow and Lagrangian trajectories of impurities have
not a biunivocal correspondence, not even in stationary flows: the Eulerian velocity
field determines the impurity trajectories, but the contrary does not apply.

4.2 The equation of motion for passively
advected impurities

4.2.1 Historical background

The equation of motion for small impurities that are passively advected by a veloc-
ity field has been matter of intense debate since the time of Stokes (1845), who for-
mulated the steady-state equation of motion of a sphere in a viscous fluid, Boussi-
nesq (1885a, 1885b) and Basset (1888a, 1888b), who developed independently the
mathematical framework and the expression for the unsteady motion of a solid
sphere inside an infinite, viscous and quiescent fluid, up to the recent formulation
by Maxey & Riley (1983) in non rotating systems, which seems to be the dominant
reference for most recent papers on this subject, both from the physical and the
engineering points of view.

Maxey & Riley’s equation of motion is developed for very small (with re-
spect to the length scale of the flow), rigid, spherical impurities with small particle
Reynolds number1. The impurities are considered as passive particles, i.e., they
do not influence the dynamics of the advecting flow, except for local disturbances
which are reflected in the equation of motion itself and are used for its derivation.
In this formulation (which is valid for a three-dimensional flow), forces that act on
an impurity are provided by an ”inertial” term which is the force exerted by the
flow directly on the impurity (and provided by the Navier-Stokes equation), the
Stokes drag force, the gravitational force, the so-called ”added-mass” term which
is related to the boundary layer that forms around the moving impurity, and the
Basset term which takes care of the past history of the impurity (it is also called
”memory” term). Other less important terms are given by the so-called ”Faxen
corrections”, which are due to the non-uniformity of the advecting flow.

The formulation by Maxey & Riley is valid in non-rotating reference frames;
furthermore, it does not consider the possible lift force which arises when the spher-
ical particles rotate in a fluid with different local translational velocity (”Magnus

1The particle Reynolds number is defined as Re imp = Wa=�, where W is taken as a represen-
tative velocity scale for U� u, the velocity of the impurity relative to that of the surrounding fluid,
a is the radius of the spherical impurity and � is the kinematic viscosity of the fluid.

87



effect”, Magnus 1861) or simply move in a shear flow (”Saffman effect”, Saffman
1965). Usually the Magnus effect is difficult to evaluate, except than in very spe-
cific situations; on the other hand, Saffman proposed a model for the expression of
the lateral force (i.e., lift force) on a sphere in shear flows, which is used mostly as
an added component to the total hydrodynamic force acting on an impurity. More
recently, Auton (1987) and Auton et al. (1988) have calculated the lift force on a
sphere in rotating flows.

A complete of the history of the equation of motion for impurities in non-
rotating systems is provided by Michaelides (1997). In rotating reference frames,
apparent forces arise (Coriolis force and centrifugal force), thus in the equation of
motion one has to take them into account. Tanga et al. (1996) and Chavanis (2000)
have recently dealt with impurities in a rotating system. In these two cases, the
rotating reference frame is the early solar nebula and the key issue is the effect of
the Coriolis force on very heavy dust particles.

4.2.2 The equation of motion for impurities in a 2D rotating flow

In this thesis, I address the study of the dynamics of impurities in a barotropic,
rapidly rotating, turbulent flow. In particular, my purpose is to clarify the role
played by coherent vortices in the dynamics and transport of finite-sized particles
which are lighter or heavier than the surrounding fluid. The special case of finite-
sized, neutrally-buoyant tracers is also considered in chapter 7; this case has an
immediate application to laboratory experiments.

The system in which I study the dynamics of impurities is two-dimensional
freely-decaying turbulence. No free-surface or ageostrophic effects are considered,
thus my results are not directly applicable to a geophysical model. Nevertheless,
this is a basic study of the impurity dynamics in a turbulent flow characterized by
fully-developed coherent vortices, thus the choice of a simple model is, without
loss of generality, the first step to understand the behaviour in more complicated
flows.

A two-dimensional equation of motion for impurities is used. It comes from the
formulation by Maxey & Riley (1983), which is extended to a rotating reference
frame. For very small2, rigid, spherical impurities with a small Reynolds number,
embedded in a 2D rotating fluid layer, the equation of motion are written as:

�p
d2X

dt2
= �f

Du

Dt
� 9�f�

2a2

�
dX

dt
� u

�
� 1

2
�f
d

dt

�
dX

dt
� u

�

�2
�
�
�p
dX

dt
� �fu

�
+

1

2
�f

�
dX

dt
� u

�
� !; (4.3)

where X(t) = (X(t); Y (t)) is the instantaneous position of the impurity in the
two-dimensional Eulerian velocity field u(x; t) = (u(x; t); v(x; t)), d=dt = @=@t+

(dX=dt) �r is the total time derivative following the impurity (the “particle deriva-
tive”),D=Dt = @=@t+(u�r) is the material derivative following the fluid motion,

2a� L, where a is the radius of the impurity and L a characteristic length scale of the flow
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a is the radius of the spherical impurity, �p and �f are respectively the density of
the impurity and of the fluid element with the same volume, � is the kinematic
viscosity,
 is the angular velocity of the rotating reference frame and ! = r� u
is the vorticity.

The l.h.s. of equation (4.3) represents the Lagrangian acceleration of the impu-
rity due to the forces acting on it, which are provided by terms on the r.h.s. of the
equation. These are:

(i) �f DuDt
, the force exerted by the fluid on the impurity, in general provided by

the Navier-Stokes equation applied in the instantaneous position occupied
by the particle. This is also called “inertial term”;

(ii) �9�f�

2a2

�
dX
dt
� u

�
, the Stokes drag on the impurity. This term depends on the

relative velocity between the fluid and the particle. The present formulation
is appropriate for laminar motion; for turbulent flows, this term is sometimes
written as �C

�
dX
dt
� u

� ���dXdt � u
���, which has, however, a similar effect on

the dynamics;

(iii) � 1

2
�f

d
dt

�
dX
dt
� u

�
, the added mass term. This is due to the boundary layer

that forms around the moving impurity;

(iv) �2
�
�
�p

dX
dt � �fu

�
, the Coriolis force that acts only in a rotating reference

frame and depends on the velocity difference between the impurity and the
fluid, weighted by the respective densities;

(v) 1

2
�f

�
dX
dt
� u

�
� ! is the lift force in the formulation by Auton (1987) and

Auton et al. (1988) in rotating flows.

Having in mind possible geophysical applications of the 2D flow model in which I
study the dynamics of impurities, buoyancy and centrifugal force do not compare
into equation (4.3), since they depend on the gradient of the total (gravitational and
centrifugal) potential, which is mostly in the local vertical direction on the Earth’s
surface; buoyancy and centrifugal force, therefore, do not influence the horizontal
motion.

Further on, I disregard the effect of the so-called Faxen corrections, which are
terms proportional to a2r2

u, due to the non-uniformity of the Eulerian flow. The
reason is that, performing a scale analysis where L is the length scale of the flow
and a is the particle radius, the Faxen terms are of order O

�
a2=L2

�
with respect

to the other terms, and can thus be discarded, since we suppose a � L. I do not
consider another term in equation (4.3), that is the Basset term, or “memory term”.
The Basset term is assumed to have negligible influence on the impurity dynamics
in rotating flows; see Paradisi & Tampieri (2001) for details about the effects of
this term on the impurity dynamics in non-rotating systems.
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The equation of motion (4.3) may be conveniently nondimentionalized in order
to identify the parameters which govern the dynamics of the impurities:

d2X

dt2
= �

Du

Dt
� 

�
dX

dt
� u

�
+

1

2
�
du

dt

��

�
Ro�1Z �

�
dX

dt
� �u

�
+

1

2
�

�
dX
dt
� u

�
� !; (4.4)

where now X, u and t are nondimensional variables and Z is the versor of the
local z-axis: I consider, in fact, an angular velocity vector for the rotating system
given by 
 = (0; 0;
z), which can be thought as the local vertical projection of
the Earth’s angular velocity, and ! = (0; 0; �) is the relative vorticity vector, which
has only the vertical component in a 2D flow.

The free parameters of equation (4.4) are given by the Rossby number Ro =

U=fL (where f is the Coriolis parameter, which is equal to 2
 sin(�) if we con-
sider a fluid layer on the f-plane at latitude �) and by:

� =
�f

�p
;  =

9

2
�

�
L

a

�
2

Re�1; (4.5)

where L and U are respectively the length and velocity scale of the flow, Re =

UL=� is the Reynolds number, � = 2�= (2 + �) is the scaled density ratio, due to
the presence of the added mass term, and  is sometimes called the Stokes number
or Stokes parameter. The crucial difference among light, heavy and neutral impuri-
ties is given by the parameter �: � < 1 is for impurities lighter than the fluid, � > 1

characterizes heavy impurities and � = 1 is for neutrally-buoyant tracers.

4.3 Numerical set-up

After the discussion on impurity dynamics in simple, stationary, analytical flows
in chapter 5, chapter 6 and chapter 7 are devoted to the study of impurity dyamics
in a two-dimensional turbulent flow. The numerical set-up used at this purpose is
briefly outlined in this section.

The incompressible, homogeneous, rotating, 2D advective flow is governed
by the (nondimensional) 2D vorticity equation (1.47) in free decay. Newtonian
viscosity is replaced by hypeviscosity, in order to reach higher effective Reynolds
numbers and to have dissipation at smallest scales (see footnote at page 27. The
equation for the advective flow thus reads:

@�

@t
+ J ( ; �) = ��2r4�; (4.6)

where � = r2 is the vertical component of the relative vorticity,  (x; y) is
the stream function, defined in such a way that the components of the horizontal
velocity are u (x; y) = �@ =@y and v (x; y) = @ =@x, J is the Jacobian operator
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J [a; b] = axby � aybx and �2 = 5 � 10�8 is the hyperviscosity coefficient ( see
Benzi et al. 1987, McWilliams 1984, 1990, Larichev & McWilliams 1991).

I perform the numerical experiments in a doubly periodic square domain with
size 2�, using a pseudospectral code with standard 2=3 dealiasing and a third-order
Adam-Bashford time integrator scheme for the Eulerian equation (4.6); the spatial
resolution is 512�512 grid points and the non-dimensional time step is dt = 10

�3.
The positions of impurities are obtained by integration of the (nondimensional)

equation of motion (4.4). A third-order Adam-Bashford time integrator scheme and
a sixth-order spectral spline interpolator are used for the integration of this latter
equation.

Since I am interested in the dynamics of impurities in fully developed two-
dimensional turbulence, I firstly perform the numerical integration of equation (4.6)
until a nondimensional time ti = 20; which is equivalent to 664 times the initial
eddy turnover time �eddy (t = 0). The initial conditions for the vorticity field in this
first step are the same as in McWilliams (1990), i.e. a Gaussian random realization
for the phases of each Fourier component of the field, using a fixed energy spectrum
and an initial kinetic energy E0 = 0:5 (see figure 1.3a). Secondly, 4096 impurities
are seeded uniformly in the vorticity field at time ti = 20, dominated by fully
developed vortices (the pattern of the turbulent field is similar to that depicted in
figure 1.3b), and the numerical simulations are performed until time tf = 35,
corresponding to 47 eddy turnover times at t = ti (at this time, the turbulent field
is shown by figure 1.3b). The initial velocities of the impurities are equal to the
Eulerian velocity (except fot the special case of neutrally buoyant impurities, as
specified in chapter 7, for which initial velocities are zero).

The free parameters in equation (4.4) are chosen accordingly to geophysical
scales. For a two-dimensional model of the ocean or the atmosphere on the f-
plane, for instance, the typical scales are L = 10

5 m and U = 0:1� 1 m/s, which
give a Reynolds numberRe = 10

10� 10
11 and a Rossby number Ro = 0:1� 0:01

at mid-latitudes where f = O
�
10

�4
�
. Using these scale values, and considering

a ratio (L=a) = O
�
10

5 � 10
6
�
, the order for the  parameter is O (10). I thus

study the dynamics of impurities with  in the range 5 � 50 and Ro in the range
0:01� 0:1.

4.4 Previous results on impurity dynamics
in vortical flows

Several studies have been carried out in the last ten years in order to understand
the dynamics of small impurities embedded in a fluid when vortices are a strong
component of the flow. Most of them have been performed by using very simple,
mostly stationary, 2D analytical flows characterized by the presence of a sequence
of cellular vortices. In non-rotating systems, vortex centres (both cyclonic and
anticyclonic) are asymptotically stable fixed points for light impurities (� < 1),
which are attracted toward the center of vortices, whereas they are unstable for
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heavy particles (� > 1), which are ejected out of vortex cores (Crisanti et al. 1990,
1992, Tanga & Provenzale 1994). In the case � = 1 (neutral impurities), the initial
relative velocity plays an important role in the dynamics: for zero initial relative
velocity, vortex centres are neutrally stable points, but finite relative velocities al-
low the neutral impurities to approach the vortex centres in a transient time whose
duration is determined by the Stokes parameter (Babiano et al. 2000).

In rotating systems, the Coriolis force acts as a centripetal force for heavy im-
purities in anticyclonic vortices, and tends to push them toward the center of anti-
cyclones, providing, for instance, a possible astronomical mechanism for dust par-
ticles aggregation and formation of planetesimals in the early solar nebula (Tanga
et al. 1996, Bracco et al. 1999, Chavanis 2000). Some other effects, due to the lift
force and the so-called Basset force that act on an impurity, have been taken into
account by Thomas (1992), Druzhinin and Ostrovsky (1994), Paradisi & Tampieri
(2001).
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Chapter 5

Dynamics of impurities in
stationary vortical flows

The dynamics of impurities in stationary, analytical flows, characterized by the
presence of vortex structures, is discussed. In particular, the cellular flow, consti-
tuted by the repetition of a sequence of vortices, and the Gaussian vortex model are
considered. The dynamics of impurities is analyzed with respect to the different
forces that occur in the equation of motion, and with respect to the different gov-
erning parameters. Both non-rotating and rotating reference frames are discussed.
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5.1 Stationary vortical flow models

As pointed out at the end of the previous chapter, many results on impurity dynam-
ics in vortices have been obtained by using simple, analytical, stationary, 2D flow
models constituted by the repetition of a sequence of cyclonic and anticyclonic vor-
tices (figures 5.1 and 5.2). These cellular flows may be described by the following
(nondimensional) stream functions:

 c1 (x; y) =  0 (cos x+ cos y) ; (5.1)

 c2 (x; y) =  0 (cosx � cos y) ; (5.2)

which give different patterns for the Eulerian fields but the same results with re-
spect to the dynamics of impurities: linearization of equations (5.1) and (5.2)
in vortex centres (elliptic fixed points) and in vortex “vertices” (hyperbolic fixed
points), in fact, leads to the same expression for the two stream functions.

Figure 5.1: Pattern of the two-dimensional cellular flows described by the stream functions: (a)
 c1 (x;y) =  0 (cos x+ cos y); (b)  c2 (x; y) =  0 (cos x � cos y).

By considering these analytical, advective flow models, linear stability analysis
may be used in the (nondimensional) equation of motion for impurities (4.4), in
order to study the dynamics of light and heavy particles around the fixed points (in
particular, the vortex centres).

Cellular flows, although useful for obtaining analytical results, have limited
physical correspondence: vorticity and velocity profiles of a vortex in a cellular
flow are different from the profiles of a coherent vortex in 2D turbulence (see,
e.g., figures 2.13-2.16). A more reliable model of a vortex structure is provided
by Carton et al. (1989), and is often applied to laboratory vortices (see Hopfinger
& van Heijst 1993) and oceanic vortices (see Simpson et al. 1984). This is an
analytical model of an isolated, circular, two-dimensional vortex, parameterised by
the vorticity-profile “steepness” �. Such a vortex is described, in polar coordinates
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(r; �), by a (nondimensional) expression for the stream function,

 0

�
r0
�
= � 0

0
exp

�
�2r

0�

�

�
; (5.3)

which depends only on the nondimensional distance r 0 = r=L from the vortex
centre,  0

0
being the value of the nondimensional stream function in the centre and

L the scale of the vortex radius.
The case � = 2 corresponds to a Gaussian profile of the stream function and it

is called the Gaussian vortex model for an isolated vortex:

 0

G

�
r0
�
= � 0

0
exp

�
�r02

�
: (5.4)

In this model, the expressions for the (nondimensional) vorticity, the azimuthal
velocity and the Okubo-Weiss parameter read:

�0 (r0) = 4 0

0

�
1� r02� exp ��r02� ;

u0� (r
0

) = 2 0

0
r0 exp

��r02� ;
Q0

(r0) = �16 02

0

�
1� 2r02

�
exp

��r04� ;
(5.5)

and they are plotted in figure 5.2. The radial velocity, which is defined as u0r = �
1

r0
@ 0

@�
,

is throughout zero. The azimuthal velocity has an extreme (maximum or minimum
depending on the vortex sign) at r 0 = 1=

p
2 �= 0:71, corresponding to the value

Q = 0 (vortex edge). Note that the value  0

0
= �0

0
=4, where �0

0
is the vorticity

in the centre of the vortex, is a new free (Eulerian) parameter for the study of the
dynamics of impurities. This vortex model has the advantage to match the kinetic
energy and Q-function curves that charachterize a typical isolated vortex in two-
dimensional turbulence, as shown by the cross-sections in figures 2.13-2.16.

The isolated Gaussian vortex model described above consists of a core sur-
rounded by an annulus of oppositely-signed vorticity, in such a way that the vortex
contains zero net vorticity. In barotropic turbulence, however, usually a vortex has
a single-signed vorticity. A Gaussian vortex model with single-signed vorticity
can be obtained by writing a Gaussian expression for relative vorticity instead of
stream function:

�0IG
�
r0
�
= �0

0
exp

�
�r02

�
: (5.6)

Azimuthal velocity in this latter case reads:

u0�
�
r0
�
=

� 0
0

2r0

h
1� exp

�
�r02

�i
; (5.7)

where the relationship  0

0
= �0

0
=4 still applies. Instead of rapidly decreasing to

zero, azimuthal velocity for a non-isolated vortex has a longer, less steep tail, which
extends the vortex influence far from its core (see figure 5.3).
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Figure 5.2: Plots of azimuthal velocity (solid line), vorticity (dashed line) and Okubo-Weiss pa-
rameter (dotted line) for the isolated Gaussian vortex model. The radial distance is nondimensional
and  0

0 = 1.
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Figure 5.3: Plots of azimuthal velocity (solid line) and vorticity (dashed line) for the Gaussian
vortex model with single-signed vorticity. The radial distance is nondimensional and � 0

0 = 1.
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By using the linearized, equivalent Cartesian expression of azimuthal velocity
(5.5) or (5.7) in a neighborhood of the vortex centre, it is easy to verify that one
obtaines the same results as by using the stream function for a cellular flow.

For the linear stability analysis of the equation of motion (4.4) for impurities
around the vortex centres, the four models described above are equivalent. The
difference of the Gaussian vortex model (isolated or non-isolated) with respect to
the simple cellular flow lies in the nonlinear effect introduced by the presence of
the extreme of the azimuthal velocity at the edge of the vortex, where Q � 0:

From now on, I disregard the primes. Variables have to be considered as nondi-
mensional.

5.2 Linear stability analysis of the equation of motion
for impurities

Inside vortex cores, a linear approach may capture the dynamical behaviour of light
and heavy particles, thus a linear stability analysis of the complete equation (4.4)
is performed around the centre of an isolated Gaussian vortex, by using both a
cyclone and an anticyclone (given respectively by the values  0 > 0 or  0 < 0).
The linearized Cartesian components of the velocity field in the neighborhood of
(0; 0) read:

u (x; y) = �2 0y +O
��
x2 + y2

�3=2�
v (x; y) = +2 0x+ O

��
x2 + y2

�3=2�
:

(5.8)

The analysis is performed separately in non-rotating and rotating reference frames,
in order to isolate the effects of the Coriolis force on the impurity dynamics. Fur-
thermore, the role of the lift force is also analized separately.

5.2.1 Non-rotating reference frames

In non-rotating reference frames, and without considering the lift force, the equa-
tion of motion for impurities simply reads:

d2X

dt
= �

Du

Dt
� 

�
dX

dt
� u

�
+

1

2
�
du

dt
: (5.9)

The equivalent linearized system of differential equations can be written in matrix
form (I set a = 2 0 = �0=2, U = dX=dt and V = dY=dt)):

d

dt

0
BBB@
X

Y

U

V

1
CCCA =

0
BBB@

0 0 1 0

0 0 0 1

�a2� �a � �a�=2
a �a2� a�=2 �

1
CCCA
0
BBB@
X

Y

U

V

1
CCCA : (5.10)

The solution for the linear system is expressed for each component of the impu-
rity position vector in phase space X = (X; Y; U; V ) as a linear combination of

97



exponentials, Xi �
P

k exp (�kt), where the values �k are the solutions of the
fourth-order eigenvalue equation given by det (A� �I) = 0 (being A the coeffi-
cient matrix in system (5.10) and I the identity matrix). For this system, the eigen-
values are complex conjugates, then only two real parts are distinct. The maximum
relative value between the two distinct real parts determines the behaviour of the
impurities where the linear approximation is valid: ifReM = max(�1; �3) is neg-
ative, the vortex centre (which is a fixed point for system (5.10)) is a stable point,
since all the eigenvalues have negative real parts, and ReM is a measure of the
time needed to the impurity to converge toward the centre, starting from an initial
positionX = (X0; Y0; U0; V0), supposed to be still in the linear regime; if ReM is
positive, the vortex centre is unstable, since there is at least one eigenvalue which
has positive real part, andReM gives an estimate of the growth rate of the distance
of the impurity from the initial position in phase space. If all the four eigenvalues
have real part equal to zero, the vortex centre is neutrally stable.

The parameter � (and thus the related � parameter) in the inertial and the added
mass terms is fundamental in differing the dynamics of the three types of impuri-
ties (light, heavy and neutral) in vortex cores. Solutions for ReM shows that the
value � = 1 (and therefore � = 2=3) represents a separation between two very
different dynamical regimes: for values � > 1 (light impurities), the vortex cen-
tres (both cyclonic and anticyclonic) are asymptotically stable points, whereas for
� < 1 (heavy impurities) these fixed points are unstable. Physically, this means
that vortex centres attract impurities less dense than the fluid and repell impurities
that are denser than the fluid, the further � is from one, the stronger the effects.
The Stokes drag further acts to increase or reduce (according to the value of ) the
speed of approach to the vortex centres of light particles or the speed of removal
of heavy particles, but it does not change the scenario determined by � (see also
Crisanti et al. 1990, 1992 and Paradisi & Tampieri 2001). In the case � = 1 (neutral
impurities), vortex centres are neutrally stable points (real parts of the eigenvalues
are all zero), thus these particles undergo stable circular trajectories around the
centre. But the initial relative velocity plays an important role in the dynamics of
neutrally-buoyants impurities (see chapter 7).

As already pointed out, the value of ReM gives an estimate of the capture
time towards the vortex centre for light impurities or the expulsion time out of the
vortex core for heavy impurities. The asymptotic behaviours of ReM , at � and �0
fixed, for small and large Stokes parameters give an estimate of the corresponding

behaviours of capture and expulsion times as function of : they are
1


at small

Stokes parameters and  at large ones (see Paradisi & Tampieri 2001).

5.2.2 The effects of the Coriolis force in rotating systems

In rotating reference frames, by adding the Coriolis force��

�
Ro�1Z �

�
dX

dt
� �u

�
in the equation of motion (5.9), the matrix form of the linearized system of differ-
ential equations reads (I set " = Ro�1):
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d

dt

0
BBB@
X

Y

U

V

1
CCCA =

0
BBB@

0 0 1 0

0 0 0 1

�a�("+ a) �a � �� �a
2
� "

�

�
a �a�("+ a) �

�
a
2
� "

�

� �

1
CCCA
0
BBB@
X

Y

U

V

1
CCCA

(5.11)
For system (5.11), the results change if one considers an anticyclone or a cy-

clone. In particular, for an anticyclone the constant a = 2 0 is negative, then the
value Ro = �1=2 0 is critical, as the terms (3,1) and (4,2) in the matrix become
zero and the terms (3,4) and (4,3) reduce to, respectively,�a and +a. It is possible
to verify with some algebra that, in this particular case, two real parts of the four
eigenvalues are zero and the other two are negative, which means that the anticy-
clonic centre becomes rapidly neutrally stable for Ro = �1=2 0 = �2=�0, being
�0 the negative vorticity in the centre. This does not happen for a cyclonic vortex,
for which a is positive; in this case, a critical value is given by Ro = 1=� 0, for
which the system (5.11) reduces to the simplest case, without Coriolis force and
added mass term.

The differences between cyclones and anticyclones with respect to the dynam-
ics of light and heavy impurities inside vortex cores can be summarized by using
the plots of ReM in figure 5.4, as function of the Rossby number and the Stokes
parameter, in the case with �0 = 4 0 = 40:

� in a cyclone, light impurities are always attracted toward the centre, heavy
impurities always escape out of the core. The capture time and the expulsion
time are minimum for large  and small Rossby number. These properties
depend of course on the value of the vorticity in the centre: in general, the
stronger the vorticity is, the faster capture or expulsion processes are, espe-
cially at large  and Rossby number;

� in an anticyclone, for Ro < �2=�0 light impurities are expelled whereas
heavy impurities are attracted toward the centre (this result has already been
underlined by Tanga et al. 1996 and recently by Chavanis 2000). A strong
minimum in the capture and expulsion times is evident for small  and
Ro � �1=�0. For Ro > �2=�0, on the contrary, light impurities are slowly
attracted and heavy impurities are slowly expelled. From a physical point of
view, the discriminating condition is given by the comparison between the
angular velocity in the centre of the anticyclonic vortex, due to the rotation
of the vortex itself, and twice the value of the angular velocity of the rotating
reference frame: this comes from the fact that d�

dt (r = 0) =
u�
r = 2 0 and

Ro = U=2
L, where 
 is the angular velocity of the system.

5.2.3 The role of the lift force

Lift force does not introduce significant changes in the scenario previously de-
picted. The matrix form of the linearized system of differential equations reads:
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-1.18
-1.12
-1.04
-0.93
-0.80
-0.65
-0.50
-0.35
-0.18

(a)

0.22
0.43
0.62
0.80
0.96
1.09
1.19
1.24
1.29

(b)

Figure 5.4: Plots of ReM (maximum value of the real parts of the eigenvalues of system (5.11))
in the neighborhood of the centre of a Gaussian vortex for light and heavy impurities, as function
of the Stokes parameter and the Rossby number. Panel (a) is for light impurities (� = 1:2) in a
cyclone, panel (b) is for heavy impurities (� = 0:8) in a cyclone, panel (c) is for light impurities in
an anticyclone and panel (d) is for heavy impurities in an anticyclone. In all the panels, j�0j = 40.
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-0.56
-0.46
-0.34
-0.18
-0.00
0.24
0.85
1.83
3.27

(c)

-2.6
-1.3
-0.7
-0.2
0.0
0.2
0.4
0.5
0.6

(d)

Figure 5.4: (continued)
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d

dt

0
BBB@
X

Y

U

V

1
CCCA =

0
BBB@

0 0 1 0

0 0 0 1

�a�("+ 2a) �a � �
�
a
2
+

"
�

�
a �a�(" + 2a) �� �a

2
+

"
�

� �

1
CCCA
0
BBB@
X

Y

U

V

1
CCCA

(5.12)
It can be numerically verified that the critical value of the Rossby number oc-

curs at Ro = �1=2 0, such as in the previous case without the lift term. The plot
of ReM are very similar to the ones showed in figure 5.4.

5.3 Capture of impurities by vortices

Linear stability analysis applies rigorously only in a neighborhood of fixed points
(the vortex centre in the case of the Gaussian vortex model). In practice, the results
discussed in the previous section are valid inside vortex cores, far from the vortex
edge.

For the study of transport of impurities in vortex-dominated flows, the dynam-
ical behaviour out of vortex cores is important. Because of the presence of the
extreme in the azimuthal velocity at vortex edge, nonlinear effects are introduced
and capture or expulsion of impurities may change dramatically with respect to the
results shown above.

Since linear analysis does not apply outside vortex cores, a different technique
has to be used in order to explore the dynamics of light and heavy particles as a
function of the governing parameters. One possibility is to write the equation of
motion (4.4) in polar coordinates (r; �), with the origin in the centre of a Gaussian
vortex, and to analyze the trajectories of impurities in phase space.

The radial component of equation (4.4) (without considering the lift force) sim-
ply reads:

d2R

dt2
=

1

R

"�
R
d�

dt

�2
� 3

2
�u2�

#
�  dR

dt
+

�

�
Ro�1

�
R
d�

dt
� �u�

�
; (5.13)

where u� is the Eulerian azimuthal velocity of the advective flow (which is pro-
vided, in the case analyzed here, by expression (5.5), while the radial velocity is
equal to zero), R and � are respectively the radial and azimuthal components of the
impurity position in polar plane, dR=dt and R(d�=dt) are its radial and azimuthal
velocities.

A trajectory in phase space is given by the time evolution of the vector

�
R(t);�(t);

dR

dt
(t);

d�

dt
(t)

�
;

which at fixed time identifies the position of an impurity in phase space.
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The projections of the impurity trajectories on the plane
�
R;
dR

dt

�
have partic-

ular importance, since impurities tend always to circle around the vortex centre, but
are captured by (or ejected out of) vortex cores with different strenghts for different
values of the governing parameters. In particular, I am interested in exploring the
role of the Stokes parameter and the Rossby number in the process of capture of
impurities by a vortex.

5.3.1 Capture of light impurities in non-rotating systems

If the density ratio � is fixed, a simple analysis of the radial component (5.13) of
the equation of motion for impurities (without the Coriolis force and the lift term),
is useful to give a qualitative picture of the dynamics.

The first term in the r.h.s. of equation (5.13) gives always a centrifugal con-
tribution, whereas the second term is always centripetal. The third term (which
includes the Stokes parameter) gives a centrifugal contribution if the impurity ap-
proaches the vortex centre or a centripetal one if it is directed outwards, the larger is
, the bigger the contribution. If we consider, for instance, a light impurity outside
a Gaussian vortex, starting at the periphery of the circulation cell with the same ve-
locity as the Eulerian velocity (thus, only azimuthal), the initial contribution is only
given by

�
1� 3

2
�

�
=R; which is negative, thus centripetal. As time goes on, the

term � dR
dt

increases (as absolute value), while the term u2�=R becomes bigger as

R decreases, up to the maximum at R �= 0:71. If  is small, the latter contribution,
which is centripetal, may become prevalent and the impurity is easily captured by
the vortex in a short time scale, with a nonnegligible centripetal acceleration. For
large , the initial centripetal acceleration is immediately compensated by the cen-

trifugal contribution given by� dR
dt

, and the time scale of the fall of the impurity

inside the vortex becomes very large.
More quantitatively, in figure 5.5, as an example, I plot the projections on the

plane
�
R;
dR

dt

�
of the trajectories in phase space for a light particle with  = 5

and a particle with  = 20; the initial positions in phase space are given by the set�
R;�;

dR

dt
;
d�

dt

�
=

�
1:75; 0; 0;

u� (1:75)

1:75

�
, corresponding to a position inpolar

plane at the pheriphery of the circulation cell (see figure 5.2). The trajectories in
phase space are obtained as numerical solutions (for a total nondimensional time
T = 10) of the system given by the equation for the radial component (5.13) and
the corresponding equation for the azimuthal component of the impurity accelera-
tion in a non-rotating reference frame.

The initial smaller centrifugal contribution given by the term � dR
dt

with  =

5 allows the impurity to reach larger, negative radial velocity and to be strongly
captured in a short time; during the same time, the light particle with  = 20 does
not go further than R = 1:6.
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Figure 5.5: Trajectories on the plane
�
R;

dR

dt

�
of a light particle (� = 1:2) with  = 5 and of a

particle with  = 20 for a Gaussian vortex with �0 = 40 (equation (5.5)). The initial positions in

phase space are given by the set
�
R;�;

dR

dt
;
d�

dt

�
=

�
1:75; 0; 0;

u� (1:75)

1:75

�
, corresponding to a

position in polar plane at the pheriphery of the circulation cell, out of the coherent structure (see also
figure 5.2). The solid line is for the impurity with  = 5 while the dashed line is for the case  = 20.
The trajectories in phase space are numerically computed for a total nondimensional time T = 10.

Analogous results are obtained by using expression (5.7) for the Eulerian az-
imuthal velocity (Gaussian vortex with single-signed vorticity). The only differ-
ence is that, in this case, also large Stokes parameters allow light impurity to be
captured in a shorter time scale (since initial azimuthal velocity is larger in the
same initial, radial position) or, equivalently, the long tail of the azimuthal velocity
allow light impurities with large  to be captured even very far from the vortex
core.

The same analysis performed for the capture of light impurities inside a vortex
can be repeated for heavy particles outside a vortex core; in this latter case, the
ejection of heavy impurities out of the circulation cells is favoured for small values
of the Stokes parameter.

5.3.2 Capture of light and heavy impurities induced by the Coriolis
force

In a rotating reference frame, two new terms appear in the radial component of the

impurity acceleration, namely
�

�
Ro�1R

d�

dt
, which gives a centrifugal contribu-

tion in a cyclone and a centripetal one in an anticyclone, and ��Ro�1u� which
gives a contrary contribution. In the case in which � � 1, as pointed out by Tanga
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et al. (1996), the only new important term is the former, which favours the capture
of very heavy particles by anticyclonic vortices; if � � 1; the latter term favours
the capture of very light impurities in cyclones. In all the intermediate cases, the
equilibrium among the different terms in equation (5.13) determines the capture
or expulsion of impurities, depending on the parameters. I will discuss here the
role of the Rossby number in the process of capture of impurities in cyclones and
anticyclones, if � and  are fixed.

To do that, I show in figures 5.6 and 5.7 the projections on the plane
�
R;
dR

dt

�
of the trajectories in phase space for a light particle (� = 1:2,  = 5) withRo = 0:1

or Ro = 0:02, which starts outside a cyclonic Gaussian vortex with  0 = 10, and
an heavy impurity (� = 0:8,  = 5) which starts outside an anticyclonic vortex
(the initial positions in phase space are the same as in the non-rotating case). As
one can see in figure 5.6 for the case of light impurities in a cyclone, the particles
are captured by the vortex both if the rotation of the system is strong (Ro = 0:02)
and if it is weaker (Ro = 0:1); anyway, a weak rotation favours the capture of light
impurities in cyclonic vortices, since the initial damped oscillations in the radial
velocity for the case withRo = 0:02 (strong rotation) lead to a smaller velocity for
the fall inside the vortex, thus to a longer capture time scale.
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Figure 5.6: Trajectories on the plane
�
R;

dR

dt

�
of a light particle (� = 1:2,  = 5) withRo = 0:1

(solid line) and of a particle with Ro = 0:02 (dashed line) for the same cyclonic Gaussian vortex of
figure 5.5. The initial positions in phase space are the same as in figure 5.5. The total nondimensional
time of the computation of the trajectories in phase space is T = 10.

The situation changes for the case of heavy impurities in an anticyclonic vortex:
a strong rotation (Ro = 0:02) leads to the fast capture of the heavy impurity, which
reaches the center of the anticyclone in a finite time. On the contrary, in the case of
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Figure 5.7: Same as in figure 5.6, but for an heavy impurity (� = 0:8,  = 5) in an anticyclonic
Gaussian vortex. The solid line is for the case with Ro = 0:1, the dashed line is for Ro = 0:02

weaker rotation (Ro = 0:1), the particle is initially attracted into the anticyclone up
to a distance from the centre R = 0:5, but it is then expelled out of the vortex core,
as the results given by the linear stability analysis predict. The heavy impurity is
then attracted toward an equilibrium distance far from the vortex centre in which
the centripetal and centrifugal forces equilibrate.

This situation corresponds in phase space to a limit cycle, described by the
condition �

R;�;
dR

dt
;
d�

dt

�
=

 
Req;�; 0;

u� (Req)

Req

!
; (5.14)

where Req is the equilibrium distance far from the anticyclonic centre. The ex-
pression for Req is easily found by inserting in equation (5.13) the values which
describes the limit cycle in phase space and by using the expression (5.5) for the
azimuthal velocity. This yields:

Req =

s
� ln

�
�Ro

�1

2 0

�
: (5.15)

It is clear that there is an equilibrium distance only for an anticyclonic vortex ( 0 <

0), when Ro > �1=2 0. This is perfectly in accordance with the fact that for
Ro > �1=2 0 the anticyclonic centre is an unstable point for heavy particles,
while these ones are anyhow attracted into the vortex, if they start outside.

The closed orbit in phase space, described by vector (5.14), is a stable attractor
for heavy impurities in anticyclones. In the limit Ro ! 1, thus in a non-rotating
reference frame, one recovers the result found above: heavy impurities do not enter
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any vortex, neither cyclonic nor anticyclonic, since the resulting equilibrium dis-
tance is infinite. Furthermore, since the expression for Req does not depend on �,
it is also valid for light particles in anticyclones. In this case, R eq is an equilibrium
distance at which centrifugal and centripetal forces cancel out, but it is not an at-
tractor orbit in phase space: if R < Req, in fact, light particles are attracted toward
the centre of the anticyclone (as seen by using linear stability analysis) and for
R > Req they are ejected out of the vortex. In the limitRo !1, light impurities
are attracted into a cyclonic vortex from infinity.

Note also that expression (5.15) does not depend on the Stokes parameter, thus
the equilibrium distance is the same for different sizes of the impurities or different
Reynolds numbers.

5.3.3 The role of the lift force

The introduction of lift force, written in polar coordinates for a Gaussian vortex,
yields a new term in equation (5.13) for the radial component of the impurity accel-

eration:
�

2

�
R
d�

dt
� u�

�
�. This term leads to centrifugal or centripetal contribu-

tions to the radial acceleration which are formally similar to that produced by the
Coriolis term. Indeed, the importance of the lift term contribution is greater where
vorticity is larger, thus more inside vortex core than outside. Therefore, lift force
does not change substantially the dynamics of capture of impurities by vortices in
a rotating system.

Also the expression for the equilibrium distance Req is not modified by the
presence of the lift term, since in a limit cycle described by condition (5.14), this
term vanishes. The only remarkable effect concerns the dynamical behaviour of
heavy impurities which enter an anticyclonic core when the Rossby number is
small: trajectories in the plane (R; dR=dt) reach a certain distance from the centre,
then they make for outwards, but no equilibrium distance is present in the system,
and finally the centripetal contribution becomes predominant and the particle falls
towards the vortex centre (see figure 5.8).
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Figure 5.8: Same as in figure 5.7, with the addition of the lift term. The solid line is for the case
with Ro = 0:1 and the dashed line corresponds to Ro = 0:03
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Chapter 6

Dynamics of impurities in
barotropic turbulence

The dynamics of impurities is numerically studied in a barotropic, two-dimensional
fluid model, and the contributions given by the different terms in the equation of
motion are separately taken into account. The results obtained in analytical, sta-
tionary flows are used to explain the behaviours of light and heavy impurities when
the turbulent flow is dominated by coherent vortices.
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6.1 Impurities advected by a two-dimensional turbulent
flow

The results on impurity dynamics obtained in previous chapter by using simple,
analytical vortex models, are precious to explain most of the dynamics of light
and heavy particles in more complex, vortex-dominated turbulent flows, such as
barotropic ones.

One of the most relevant differences between coherent vortices in barotropic
turbulence and the Gaussian vortex model is that ”real” vortices may have radial
velocity (since they are not perfectly circular). Another difference is the fact that
coherent vortices are not isolated and interact with each other; dynamics of impuri-
ties during vortex-vortex interactions (straining, coupling and merging processes)
has not been taken into account in the previous chapter.

In the following, I will consider the impurity dynamics in a two-dimensional
advecting turbulent flow, whose dynamics has been widely discussed previously.
Results in a quasi-geostrophic or shallow-water approximation depend more on the
different dynamics of the advecting flow itself, than on the dynamical behaviour of
impurities in the presence of vortices.

The dynamics of light and heavy particles (as well as the dynamics of neutrally
buoyant tracers in the next chapter) in 2D turbulence is studied by means of nu-
merical simulations, whose set-up is described in chapter 4. The impurities have a
density difference no larger than 25% with respect to the fluid: I use � = 1:2 for
light particles (less dense than the fluid) and � = 0:8 for heavy particles (denser
than the fluid).

6.2 Dynamics of impurities in non-rotating
reference frames

In order to analyze separately in section 6.3 the effects on the impurity dynamics
introduced by the Coriolis force in a rotating reference frame, I deal in this section
with the simpler case in a non-rotating system, by using the following nondimen-
sional equation of motion:

d2X

dt
= �

Du

Dt
� 

�
dX

dt
� u

�
+

1

2
�
du

dt
: (6.1)

Figure 6.1 show typical trajectories of, respectively, a light impurity and an
heavy impurity initially placed inside the core of an anticyclonic vortex. Impu-
rities less dense than the fluid are attracted by vortex centres and undergo spiral
trajectories around and toward them, whereas heavy impurities undergo spiral tra-
jectories outwards, leaving the vortex cores devoid of particles.

The result at late times is a nonhomogeneous distribution of particles through-
out the turbulent field, with high concentrations of light particles and lack of heavy
particles inside vortices, as one can see in figure 6.2, which shows the distribution
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of 4096 light impurities (panel a) and heavy impurities (panel b) with  = 5 in the
turbulent field at time t = 33 (depicted in figure 1.3).
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Figure 6.1: Typical trajectories of a light impurity with � = 1:2,  = 5 (solid line) and a heavy
impurity with � = 0:8,  = 5 (dotted line) inside the core of a (cyclonic) coherent vortex. The initial
velocities are the Eulerian velocities at the corresponding initial positions. In figure, units are the
grid points; one has to multiply by 2�=512 in order to have radiants.

At fixed �, moreover, the capture time of light particles (namely, the time taken
to reach the vortex centre, starting inside the core) and the expulsion time of heavy
particles (namely, the time taken to leave the vortex core, starting close to the cen-
tre) depend on the value of the Stokes parameter , as figure 6.3 shows. In this
figure, the capture time for light impurities (solid line) is evaluated by using the
mean time taken by twelve particles with � = 1:2 and different  to reach a dis-
tance from the centre of an antyciclonic vortex corresponding to 80% of the maxi-
mum vorticity, starting from a position from the centre that is associated with 10%
of the maximum vorticity, whereas the expulsion time (dashed line) is evaluated
for twelve particles with � = 0:8 that reach a distance far from the centre which
corresponds to 10% of the maximum vorticity, starting from a position around the
centre in which the vorticity is 80% of its maximum value. The anticyclonic vor-
tex that is used has a well definite, quasi-circular shape and does not interact much
with the others during the numerical experiments. Capture time and expulsion time
curves show the same dependance from , with a minimum around  �= 20 and

asymptotic behaviours for small and large  given respectively by
1


and  (see the

inset of figure 6.3 in logarithmic scale).
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Figure 6.2: Distributions of 4096 light impurities with � = 1:2;  = 5 (panel a) and 4096 heavy
impurities with � = 0:8;  = 5 (panel b) at time tf = 33. The initial distributions are uniform,
with initial velocities equal to the Eulerian velocities at the corresponding positions. In each panel
the isolines of the vorticity field are superimposed, showing the well developed coherent structures
(see also figure 1.3b). Units are the grid points (one has to multiply by 2�=512 in order to convert
into radiants
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Figure 6.3: In this figure the continuous line represents the mean capture time of 12 light impurities
(� = 1:2) toward the center of an anticyclonic vortex versus , whereas the dashed line represents
the mean expulsion time of 12 heavy impurities (� = 0:8) out of the same anticyclonic vortex. The
chosen vortex has a well defined quasi-circular shape and does not interact much with the others.
The impurities are initially seeded equally spaced on a circle around the vortex center, with initial
velocities equal to Eulerian velocities. The procedure of evaluation of the capture and the expulsion
times is described in the text. In the inset, the scale is logarithmic for the capture time curve, and the
dashed lines are proportional to 1= and .
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Figure 6.4: Time evolution of the fractional density d = (N=Ntot) = (A=Atot) = (N=A) ��
4�2=4096

�
of 4096 light impurities (� = 1:2) in areas occupied by: (a) coherent vortices, (b)

circulation cells, (c) turbulent background. The different curves are for different values of  and for
Lagrangian particles. The initial conditions for impurities are the same as in figure 6.2. Areas occu-
pied by vortices are distinguished from the background by the values Q � 0 and vorticity � > 5,
whereas circulation cells are distinguished either byQ > 20 or by Q > 0 and � > 3. These choices
let a very good distinction among the three areas (vortices, circulation cells, background turbulence)
for these experiments.

All these properties are completely in accordance with the results given by the
linear stability analysis performed, in previous chapter, in the neighborhood of a
Gaussian vortex centre and confirm that the dynamics of impurities inside vortex
cores may be well explained by linear theory.

Vortices in two-dimensional turbulence are anyhow complex structures and the
dynamics of impurities outside vortex cores can be explained only by referring
to nonlinear effects. If one looks at figure 6.4, which shows the time evolution
of the fractional density of light impurities d = (N=Ntot) = (A=Atot) = (N=A) ��
4�2=4096

�
, where N is the number of impurities in the area A of the turbulent

field occupied by vortex cores (panel a), by circulation cells (panel b) or by the
turbulent background (panel c), and defined by using the Okubo-Weiss criterion,
two properties are evident:

1. light particles tend to concentrate inside vortex cores also at late times, com-
ing from the turbulent background (the density in circulation cells, in fact,
diminuishes such as in the background) and disregarding the barrier con-
stituted by the strong vorticity gradients at the edge of vortex cores, unlike
Lagrangian particles;

2. the concentration of light particles inside vortex cores depends inversely on
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Figure 6.5: Time evolution of the fractional density d = (N=Ntot) = (A=Atot) = (N=A) ��
4�2=4096

�
of 4096 heavy impurities (� = 0:8) in areas occupied by: (a) coherent vortices, (b)

circulation cells, (c) turbulent background. The different curves are for different values of  and for
Lagrangian particles. The initial conditions for particles are the same as in figure 6.2. The criterion
to distinguish vortices and cells from the background is the same as in figure 6.4.

: small values of the Stokes parameter favour the capture by vortices of
light impurities moving in the background.

The effect of these properties is that, if on the one hand it might be possible to
observe light particles with large  very close to the centre of vortices already at
short times, on the other hand one observes fewer light impurities inside coherent
vortices if  is large, also at late times. The latter effect cannot be explained neither
with a linear theory, nor with the simple argument that, for very large , the most
important term in the equation (6.1) is the difference dX=dt�u and the impurities
move as Lagrangian particles, which is not valid for intermediate Stokes parame-
ters. The explanation of this effect is given by the analysis of the trajectories of
light impurities with different  in the phase space, performed in previous chap-
ter: the smaller net centripetal force which characterizes light particles with large
Stokes parameters at the pheriphery of coherent structures may easily be contrasted
by the background turbulence, allowing such impurities not to be captured.

The same consideration may be repeated for heavy impurities outside a vortex
core: in this case, the expulsion of such impurities out of the circulation cells is
favoured for small values of the Stokes parameter, and the result in the different
partitions of the two-dimensional turbulent field can be seen in figure 6.5, where I
plot the fractional density versus time for heavy impurities with different .
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6.3 The effects of the Coriolis force

The introduction of the Coriolis term ��

�
Ro�1Z �

�
dX

dt
� �u

�
in the equation

for impurities in a rotating reference frame changes deeply the dynamics, leading
to an asymmetry cyclone-anticyclone with respect to the capture or expulsion of
light and heavy impurities by vortices, as predicted in previous chapter for the case
of a Gaussian vortex.
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 Figure 6.6: Distributions of 4096 heavy impurities (� = 0:8) and light impurities (� = 1:2) with
different values of Rossby number and  = 5 in a turbulent field: (a) � = 1:2; Ro = 0:1, (b)
� = 1:2; Ro = 0:02, (c) � = 0:8; Ro = 0:1, (d) � = 0:8; Ro = 0:02. These distributions
are given at t = 33 and the initial distributions are uniform, with initial velocities equal to the
Eulerian velocities at the corresponding positions. In each panel the isolines of the vorticity field are
superimposed. Units are the grid points.

The results discussed so far allow to explain the details of the dynamics of
light and heavy impurities in the two-dimensional, rotating system described by
equation (4.4), without considering the lift term. I have performed numerical ex-
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Figure 6.7: Trajectories of a light impurity with � = 1:2,  = 5 (panel a) and an heavy impurity
with � = 0:8,  = 5 (panel b) inside the core of the same anticyclonic vortex. The solid lines are
for Ro = 0:1 and the dashed lines are for the case with Ro = 0:02. The initial velocities are the
Eulerian velocities at the corresponding initial positions.

periments by using 4096 light impurities (� = 1:2) and heavy impurities (� = 0:8)
with a fixed  = 5 and Rossby numbers Ro = 0:1; 0:02. The distributions of
impurities in the turbulent field at time t = 33 (figure 6.6) reflect the analytical and
numerical results obtained in the stationary case by using an isolated vortex: in
general, light impurities concentrate inside cyclonic vortices and are expelled out
of anticyclonic ones, and the contrary happens for heavy impurities.

By looking at details, for the case with Ro = 0:1 one can appreciate that there
are some light particles very close to the center of anticyclonic vortices whereas
there are no heavy particles very close to these centers; this apparent paradox is
well explained by the fact that the anticyclones are characterized by the critical
value Ro = �2=�0 and that for Ro > �2=�0 the anticyclonic centers become
unstable for heavy particles and stable for light ones. Therefore, impurities that are
seeded initially inside anticyclonic cores with a vorticity in the centre that is greater
than 20, for the case withRo = 0:1, undergo typical centerward (light particles) or
outward trajectories (heavy particles) as figure 6.7 shows.

This behaviour inside anticyclonic vortices is also confirmed by the mean cap-
ture time plotted for 12 heavy impurities in figure 6.8a, for different Stokes param-
eters and Rossby numbers; it is evident that for Ro � 0:06 the capture time has a
strong growth for all the values of , which is compatible with the critical value of
the Rossby number for the anticyclonic vortex used in this experiment, which has
a mean vorticity in the centre �0 � �38 (the mean is calculated for the temporal
range 20 < t < 33). Also the presence of the minima in the capture time plot
for heavy impurities and for light ones (in figure 6.8b) is predicted by the linear
stability analysis around the vortex centre, as shown by ReM in figure 5.4.
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Figure 6.8: Panel (a) of this figure is the capture time towards the center of an anticyclonic vortex
for heavy impurities, as function of  and the Rossby number. The chosen vortex is the same as in
figure 6.3, as well as the time evaluation procedure. Panel (b) represents the capture time towards the
center of a cyclonic vortex versus  and the Rossby number for light impurities. In this latter case,
the chosen cyclonic vortex does not interact much with the others, and the time evaluation procedure
is the same as in panel (a).
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Figure 6.9: Time evolution of the fractional density d = (N=Ntot) = (A=Atot) = (N=A) ��
4�2=4096

�
of 4096 light impurities (� = 1:2) with  = 5 in areas occupied by: (a) coherent

cyclone and anticyclone vortices, (b) cyclone and anticyclone circulation cells, (c) turbulent back-
ground. The initial impurities distribution is uniform and the initial velocities are equal to the Eu-
lerian velocities. Areas occupied by vortices are distinguished from the background by the values
Q � 0 and vorticity � > 5, whereas circulation cells are distinguished either by Q > 20 or by
Q > 0 and � > 3. Cyclones and anticyclones are distinguished by the positive or negative value of
vorticity.

The fact that a slow rotation of the reference frame favours the capture of
light impurities inside cyclonic vortices and of heavy impurities inside anticyclonic
ones, as seen by using the analytical model of the Gaussian vortex, shows its fin-
gerprint in two-dimensional turbulence, as the fractional density of light and heavy
particles inside cyclones and anticyclones points out in figures 6.9 and 6.10. Cy-
clones always attract light impurities coming from the turbulent background, but a
larger density is reached when Ro = 0:1 with respect to the case with Ro = 0:02

(in the former case, the density is three times than that in the latter case). The
analogous situation occurs for heavy impurities in anticyclones, except that anticy-
clonic cores are repulsive forRo > �2=�0. This situation leads to concentration of
heavy particles withRo = 0:1 on stable orbits at a certain distance from the centre
of anticyclonic vortices, as it is clear if looking at figure 6.6c. The fingerprint of the
limit cycle is also given by the oscillations of the density of heavy particles with
Ro = 0:1 in anticyclonic cores and circulation cells in figure 6.10.

Due to the fact that coherent structures in barotropic turbulence are neither per-
fectly circular nor isolated, we cannot speak about an unique equilibrium distance,
but rather about a narrow equilibrium range, whose mean value can be evaluated
by using expression (5.15). In the case of the quasi-isolated anticyclonic vortex al-
ready mentioned and used for the determination of the capture and expulsion times,
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Figure 6.10: Time evolution of the fractional density of 4096 heavy impurities (� = 0:8) with  =

5 in areas occupied by: (a) coherent cyclone and anticyclone vortices, (b) cyclone and anticyclone
circulation cells, (c) turbulent background.

in figure 6.11a I plot the distribution of heavy impurities with Ro = 0:1 at time
t = 33, where the presence of an attractive line for the particle is evident.

It is convenient to use a reference frame centred in the vortex centre, in order
to evaluate the radial distance and the radial velocity of the impurities. By plotting

the projection on the plane
�
R;
dR

dt

�
of the positions in phase space for heavy

impurities (figure 6.11b), it can be seen that the stable attractor, whose projection
is represented by a simple point in the Gaussian vortex model, is here more com-
plicated, due to the presence of nonnegligible radial velocities in the Eulerian field
induced by the barotropic vortex. Anyhow, an equilibrium range is recognizable
for 11:72 < R < 14:72 grid points, with a mean value R = 13:35 grid points and
a standard deviation �

R
= 0:79 grid points (calculated for all the impurities which

lies on the attractor). If we scale the distance from the centre, by using a length
scale given by the mean value (with respect to the azimuthal angle) of the scales
L� =

p
2R jQ=0, where R jQ=0 is the distance of the edge of the vortex core (at

which the Q-value is zero), the nondimensional range is 0:67 < R0 < 0:84 and the
mean value becomes R0 = 0:76, with a standard deviation �

R0 = 0:04. By using
the analytical expression (5.15) with the mean value �0 � �38 for the vorticity
in the centre of the anticyclonic vortex, it comes out that Req � 0:80, which is
compatible with the mean value of the equilibrium range.

Similar results are obtained by using heavy particles with  = 10, although the
attractor changes slightly its form (see figure 6.12). Nevertheless, the equilibrium
range does not change a lot, confirming its independence of it from the value of the

119



280

285

290

295

300

305

310

315

370 375 380 385 390 395 400 405

Y

X

(a)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

11 11.5 12 12.5 13 13.5 14 14.5 15

dR
/d

t

R

(b)

Figure 6.11: Panel (a): positions (in grid points) occupied at time t = 33 by heavy impurities
with � = 0:8,  = 5 and Ro = 0:1 in a anticyclonic vortex with the centre in (387,298) grid points.
By using a reference frame centered in this position, panel (b) shows the projection on the plane�
R;

dR

dt

�
of the positions occupied by the impurities in phase space, where an attractor is shown to

concentrate the particles in the equilibrium range 11:72 < R < 14:72 grid points.
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Figure 6.12: Plot of the projection on the plane
�
R;

dR

dt

�
of the positions occupied by heavy

impurities with  = 10 in phase space. The attractor is very similar to the one represented in
figure 6.11b, as well as the equilibrium range 11:72 < R < 14:72 grid points.

Stokes parameter, as predicted by equation (5.15).

6.3.1 The role of the lift force

It has been verified with the Gaussian vortex model that lift force does not change
significantly the dynamics of impurities, except for some effects inside the anticy-
clonic cores, where the vorticity is larger. These effect are strictly limited to the
cores, and no significant variations in the impurity densities inside cores and cir-
culation cells can be appreciated. Not even the distributions of impurities in the
turbulent field change with respect to the case wihout the lift term.
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Chapter 7

The case of neutrally buoyant
tracers with finite size

This chapter is devoted to the analysis of the dynamics of real tracers, neutrally
buoyant but with finite size. It is pointed out that inertia can play an important
role in the dynamics of such tracers, generating significant differences with respect
to the dynamics of ideal fluid particles, and possibly introducing biasses in the
Lagrangian statistics.
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7.1 Floats, balloons and laboratory tracers

In experimental fluid dynamics, tracers are fundamental elements for the study
of Lagrangian properties of a flow, as well as for the possible reconstruction of
Eulerian velocity fields.

In laboratory experiments, microscopic particles are used to study the trans-
port and dispersion properties of a turbulent flow or to get velocity information
over a small portion of the fluid (Particle Image Velocimetry); in-situ experiments
use floats and drifters in oceans and isopycnal balloons in atmosphere in order to
reconstruct the dynamics of geophysical flows.

In all the examples above, tracers that are used are assimilated to fluid elements
and their dynamics is considered ”Lagrangian”, i.e., their equation of motion is
simply given by dX=dt = u, where u is the advecting Eulerian velocity. Fluid
elements, however, are point-like particles, whereas real tracers have finite size.
Also if they are perfectly neutral buoyants, because of their finite size (although
small with respect to the flow length scale), their dynamics is rigorously described
by the equation of motion for impurities (4.4), in which one has to put � = 1.

In this context, the dynamics of real tracers and, more in general, the dynam-
ics of neutral buoyants with finite size, may be different from the fluid element
dynamics, and possible biassed estimates of Lagrangian statistics may thus be in-
troduced when data coming from tracers in laboratory or in-situ experiments are
used. Furthermore, these data may lead to a misleading reconstruction of the Eu-
lerian characteristics of a flow, which is added to the intrinsic difficulty to link the
Lagrangian and Eulerian descriptions due to the chaotic advection which is present
also in very simple flows (Aref 1984, Aref & Balachandar 1986, Falcioni et al.
1988).

In this chapter, I discuss the dynamics of neutrally buoyant particles (� = 1),
advected by vortex-dominated flows. I will show as, also for neutrally buoyant
tracers, the presence of vortices modifies the dynamics and the overall transport
properties. First of all, the dynamics in a Gaussian vortex model is considered,
afterwards the dynamics in two-dimensional turbulence will be discussed. Possible
biasses in the statistics with respect to Lagrangian particles will be finally taken into
account.

7.2 Dynamics of finite-size tracers in a Gaussian vortex

When the density ratio � = 1 is used into equation (4.4), the equation of motion
reduces to:

d2X

dt2
=

2

3

Du

Dt
� 

�
dX

dt
� u

�
+

1

3

du

dt

�2

3
Ro�1Z �

�
dX

dt
� u

�
+

1

3

�
dX

dt
� u

�
� !; (7.1)

124



where the Stokes parameter is now simply  = 3

�
L

a

�
2

Re�1. If we follow Crisanti

et al. (1990) and we confuse the derivative d=dt with the material derivative
D=Dt, this equation in a non-rotating system simply reduces to the equation for
Lagrangian particles with the addition of a damping perturbation term, depend-
ing on . A correct approach to the problem, however, cannot confuse these two
derivatives, which are formally different.

If one performs a linear stability analysis of equation of motion (7.1) in the
neighborhood of a Gaussian vortex centre, the result is that the centre is a neutrally
stable point (the real parts of eigenvalues are zero). This means that tracers with fi-
nite size which have the same initial velocity as the fluid, are perfectly Lagrangian.
Babiano et al. (2000), however, have shown in a simple cellular flow that, also
for very small initial relative velocity with respect to the fluid, tracers trajectories
diverge from fluid trajectories during a transient time whose duration is related to
the value of the Stokes parameter. This difference is enhanced in the areas of the
flow where the Okubo-Weiss function is strongly positive (hyperbolic points); ar-
eas where the Q-value is small or negative (elliptic points) are, on the contrary,
attractors for particles with � = 1, whose trajectories can there converge to fluid
trajectories.

Usually, tracers are seeded into a fluid with zero initial velocity, both in labo-
ratory and in-situ experiments; it is very difficult to release tracers with the same
velocity as the flow. Therefore, an initial transient, whose duration depends on
the value of the Stokes parameter, is always present. During this transient, tracers
can be attracted towards the centre of a vortex and be captured by the coherent
structure, unlike Lagrangian particles.

This effect is clear in figure 7.1, which shows the trajectories (in the Cartesian
plane) of a tracer seeded at rest in a Gaussian vortex in the position (R;�) = (1; 0),
corresponding to the circulation cell (high positive Q-value). Different panels are
for the case without Coriolis force or for a cyclonic and an anticyclonic vortex in
a rotating reference frame. In figure 7.2, then, I plot the corresponding projections
on the plane (R; dR=dt) of the trajectories in phase space. In all the figures, it is
evident that an attractor is present in the system, since all the trajectories in phase
space converge in a point, which corresponds to a limit cycle in the Cartesian plane.
The transient during which the tracer falls towards the attractor depends on the
value of  (see the different lengths of the spirals in phase space in figure 7.2a).
Furthermore, the Coriolis term introduces a cyclone-anticyclone asymmetry also
in the case of finite-size tracers, but only when rotation is strong (Ro = 0:02):
in this case, the cyclone is attractive whereas the anticyclone is slightly repulsive
(note also the waving trajectories in the Cartesian plane in figure 7.1b-c).

It is easy to explain this asymmetry. The radial component of the equation of
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Figure 7.1: Trajectories in Cartesian plane for neutrally buoyant tracers in a non-rotating reference
frame (panel a), in a cyclonic vortex (panel b) and in an anticyclonic vortex (panel c). Different lines
are for different Stokes parameters in the non-rotating case, and for different Rossby number in the
rotating case (where  = 5). The initial position is in the circulation cell, at R = 1, and the initial
velocity is zero.
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Figure 7.2: Same as in figure 7.1, but for trajectories in the plane (R;dR=dt). Panel (a) is for the
non-rotating case, panel (b) for a cyclone and panel (c) for an anticyclone.
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motion (7.1) for a Gaussian vortex, simply reads:

d2R

dt2
=

1

R

"�
R
d�

dt

�
2

� u2�
#
� dR

dt
+
2

3
Ro�1

�
R
d�

dt
� u�

�
+
1

3

�
R
d�

dt
� u�

�
�;

(7.2)
If the tracer is seeded at rest, the radial acceleration at initial time is given by:

d2R

dt2
(t = 0) = �u

2

�

R
� 2

3
Ro�1u� �

1

3
u��; (7.3)

which is always centripetal for a cyclonic vortex, but may be centrifugal for an
anticyclone (u� < 0) if the Rossby number is enough small. The initial distance
Rstable at which the contribution is neither centripetal nor centrifugal, for a given
vortex and a given Rossby number, may be easily calculated from equation (7.3),
by comparing to zero the r.h.s. and considering the expressions for the Gaussian
vortex azimuthal velocity and vorticity. Without the lift term, it is possible to get
out an analytical expression:

Rstable =

s
� ln

�
�Ro

�1

3 0

�
; (7.4)

which is valid only for anticyclones whenRo > 1=3j 0j. For a given Rossby num-
ber, initial positions at distances further than Rstable lead to expulsion, otherwise
the tracer is captured. For Ro ! 1=3j 0j, Rstable ! 0, then anticyclones eject
tracers from any initial position.

7.3 Finite-size tracers in two-dimensional turbulence

Also for the case of finite-size, neutrally buoyant tracers, the results obtained by
using an analytical vortex model lead to explanation of their dynamics in a complex
flow such as the two-dimensional turbulent flow.

I have performed numerical simulations by using an uniform distribution of
4096 particles with � = 1 in the same way as described in the previous chap-
ters. Tracers with initial velocity equal to the flow velocity do not display any
remarkable difference with respect to Lagrangian particles, whereas differences
are evident when tracers are seeded at rest. In this latter case, vortex cores attract
tracers during a transient whose duration depend on the value of the Stokes param-
eter; tracers which start close to vortex cores (i.e., in the surrounding circulation
cells), disregard the barrier constituted by the strong vorticity gradient at the edge
of vortices and enter the cores, unlike Lagrangian particles. This happens both
in a non-rotating system and in the case of cyclonic vortices in a rotating refer-
ence frame. For anticyclonic vortices, attraction or removal depends on the Rossby
number: strong rotation (Ro = 0:02) favours the removal of tracers from circu-
lation cells. All these results are perfectly in accordance with the ones found by
using the Gaussian vortex model.
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Figure 7.3: Trajectories of a finite-size tracer (solid line) and a Lagrangian particle (dotted line)
starting at the same initial position in the circulation cell of an anticyclonic vortex, for the case
without Coriolis force. In figure, units are grid points (in order to have radiants, one has to multiply
by 2�=512).

Figures 7.3 show the trajectories of a finite-size tracer (solid line) and a La-
grangian particle (dotted line) starting at the same initial position in the circulation
cell of an anticyclonic vortex for the case without Coriolis force. The divergence
of the two trajectories is evident: the Lagrangian particle spreads into the turbulent
background, whereas the tracer is captured by the vortex.

After the transient during which tracers may enter vortex cores, the distribution
of these tracers in the turbulent field is inhomogeneous and does not reflect the one
of Lagrangian particles. Tracers accumulate in vortices, and this fact may be quan-
tified by looking at the time series of the fractional density inside the vortex cores
and the circulation cells (see figure 7.4 for the non-rotating case and figure 7.5 for
the rotating one). The accumulation is concentrated at early times, then the density
keeps roughly constant. The rotating case is particular significant, since it reflects
the result found by using the analytical model of the Gaussian vortex. Cyclones
are always attractive, whereas anticyclones are attractive when the Rossby number
is large, repulsive when it is small.

These results confirm that an initial uniform distribution of neutrally buoyant
tracers evolves towards a non-uniform asymptotic state in a time scale determined
by the value of the Stokes parameter. After this asymptotic state has been reached,
tracer dynamics is merely represented by the Lagrangian particles dynamics. If
the transient may be considered short in comparison with the duration of an ex-
periment employing neutrally buoyant tracers, nevertheless two important conse-
quences are evident: the first is that data provided by tracers cannot be assimilated
to Lagrangian data starting from their seeding, and the second is that after the tran-
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Figure 7.4: Time evolution of the fractional density of 4096 neutrally buoyant tracers ( = 5; 10)
and Lagrangian particles in areas occupied by: (a) vortex cores, (b) circulation cells, (c) turbulent
background. The procedure used to distinguish the different topological areas is the same as the one
used in the previous chapter.
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Figure 7.5: Same as in figure 7.4, but for the rotating case with different Rossby numbers. The
Stokes parameter is here  = 5

sient, the tracer distribution is inhomogeneous in the turbulent field. These two
factors can introduce some biasses in the statistics of real tracers with respect to
ideal fluid elements.
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Figure 7.6: Time evolution of the dispersion coefficient K(t) = A2
(t)=2t, where A2

(t) is the
absolute dispersion as defined in the text, plotted for Lagrangian particles (dashed line) and neutrally
buoyant tracers seeded at rest. Panel (a) represents the non-rotating case and solid and dash-dot line
are, respectively, for tracers with  = 10 and  = 1; panel (b) is for the rotating case and solid
and dash-dot lines are respectively for the case with Ro = 0:02 and Ro = 0:1. Straight lines are
proportional to t�, with different �.
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An example of this fact is given in figure 7.6a-b (for the non-rotating and the ro-
tating case, respectively), where I plot the dispersion coefficientK(t) = A2

(t)=2t,
where A2

(t) is the absolute dispersion, defined as:

A2
(t) =

1

N

NX
i=1

jxi(t)� xi(t0)j2 : (7.5)

Lagrangian particles (dashed line in figure 7.6a-b) show a behaviour proportional
to t at small time, and an anomalous diffusion with a behaviour proportional to t2=3

and t1=4 at intermediate time. On the contrary, tracers are initially accelerated from
rest, therefore the dispersion coefficient is proportional to t3. When Lagrangian
particles show anomalous diffusion, neutrally buoyant tracers have a dispersion
coefficient that is proportional to t, thus they do not show anomalous diffusion at
the same time as for Lagrangian particles.

This is only one example of possible biasses in the statistics; other examples
include spectra or velocity PDF, if the ensemble of tracers considered comes from
areas in the flow where vortices are abundant, leading to inhomogeneous distribu-
tion of tracers at late times.
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Conclusions

Turbulence in rapidly rotating flows is characterized by the spontaneous emergence
of long-lived coherent vortices. Examples in geophysical flows are the tropical
cyclones and the polar vortex in the atmosphere, meddies in the Atlantic ocean and
rings in the Gulf stream, great spots in the atmospheres of outer planets (the Great
Red Spot of Jupiter or the Great Dark Spot of Neptune).

In past years, this problem has been extensively explored by the use of numer-
ical simulations. In particular, simulations have shown that the vortex cores are
characterized by strong impermeability to inward and outward fluxes of passive
tracers (“Lagrangian particles”, whose dynamics is assimilated to the dynamics of
fluid elements), and they are able to trap particles for long times.

In the first part of this thesis, I have discussed the results provided by some
experiments on large-scale, quasi two-dimensional, homogeneous and rapidly ro-
tating turbulent flows, performed in the rotating tank (diameter of 14 m) of the Lab-
oratoire des Ecoulements Géophysiques et Industriels (LEGI) in Grenoble, France.
With these experiments, we obtained a large, high quality data set on the dynamics
of coherent vortices in a rapidly rotating barotropic fluid, which has been made
possible by the use of a large-scale facility and the use of laser techniques for the
flow visualization. The use of a mixed technique, experimental and numerical, has
allowed to obtain Lagrangian data and trajectories of passive tracers, which are
important to study the transport properties of tracers by coherent vortices.

The overall experimental results confirm many numerical results obtained by
previous studies: trapping of tracers for long times in vortex cores, impermeabil-
ity of vortices to inward fluxes, Lagrangian view of vortex merging etc. Differ-
ences have been found in the asymmetry cyclones-anticyclones, due to initial three-
dimensional effects in laboratory experiments, and in the lack of strong strain areas
around vortex cores.

A second part of my work has been devoted to the study of the dynamics of
real particles in vortex-dominated barotropic turbulence. Lagrangian particles and
fluid elements are considered as merely point-like and massless particles, but real
particles have finite size and finite inertia (“impurities”). An early study of the im-
purity dynamics in a simple Gaussian vortex model has allowed to obtain analytical
results which can explain most of the dynamical behaviours of such impurities in
more complex flows, such as a barotropic turbulent flow.

In particular, the dynamics of impurities in rotating, vortex-dominated flows is
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conditioned by the different influence of cyclonic and anticyclonic vortices: parti-
cles lighter or heavier than the fluid are captured or expelled by vortices according
to the vortex sign, vorticity and to the Rossby number of the rotating system, dis-
regarding the dynamical barriers at the edge of vortex cores, unlike Lagrangian
particles.

The special case of passive neutrally buoyant tracers is also taken into account:
floats and drifters in the oceans, balloons in the atmosphere and microscopic tracers
used in laboratory experiments have the same density as the fluid but finite size.
This differs their dynamics from the dynamics of Lagrangian particles and may
introduce biasses in the statistics when the Lagrangian data provided by finite-size
tracers are used and assimilated to data provided by fluid elements.
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