Climatology and first-order composition estimates of mesospheric clouds from Mars Climate Sounder limb spectra

E. Sefton-Nash, N.A. Teanby, L. Montabone, P.G.J. Irwin, J. Hurley, S.B. Calcutt

School of Earth Sciences, University of Bristol, Queen’s Road, Bristol BS8 1RJ, UK
Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford, UK
Laboratoire de Météorologie Dynamique, Université Pierre et Marie Curie, Paris, France

Abstract

Mesospheric clouds have been previously observed on Mars in a variety of datasets. However, because the clouds are optically thin and most missions have performed surface-focussed nadir sounding, geographic and seasonal coverage is sparse. We present new detections of mesospheric clouds using a limb spectra dataset with global coverage acquired by NASA’s Mars Climate Sounder (MCS) aboard Mars Reconnaissance Orbiter. Mesospheric aerosol layers, which can be CO2 ice, water ice or dust clouds, cause high radiances in limb spectra, either by thermal emission or scattering of sunlight. We employ an object recognition and classification algorithm to identify and map aerosol layers in limb spectra acquired between December 2006 and April 2011, covering more than two Mars years. We use data from MCS band A4, to show thermal signatures of day and nightside features, and A6, which is sensitive to short wave IR and visible daytime features only. This large dataset provides several thousand detections of mesospheric clouds, more than an order of magnitude more than in previous studies.

Our results show that aerosol layers tend to occur in two distinct regimes. They form in equatorial regions (30°S–30°N) during the aphelion season/northern hemisphere summer (Ls < 150°), which is in agreement with previous published observations of mesospheric clouds. During perihelion/dust storm season (Ls > 150°) a greater number of features are observed and are distributed in two mid-latitude bands, with a southern hemisphere bias. We observe temporal and longitudinal clustering of cloud occurrence, which we suggest is consistent with a formation mechanism dictated by interaction of broad temperature regimes imposed by global circulation and the propagation to the mesosphere of small-scale dynamics such as gravity waves and thermal tides.

Using calculated frost point temperatures and a parameterization based on synthetic spectra we find that aphelion clouds are present in generally cooler conditions and are spectrally more consistent with H2O or CO2 ice. A significant fraction has nearby temperature retrievals that are within a few degrees of the CO2 frost point, indicating a CO2 composition for those clouds. Perihelion season clouds are spectrally most similar to H2O ice and dust aerosols, consistent with temperature retrievals near to the clouds that are 30–80 K above the CO2 frost point.

1. Introduction

Martian mesospheric clouds have been detected using a variety of infrared, ultraviolet and visible wavelength datasets at various points in the martian day and year, but limited spatial and seasonal coverage of observations has resulted in gaps in our understanding of cloud occurrence and composition over the martian globe and throughout the martian year. Aerosol layers are composed of either dust, water ice or CO2 ice, but a wide range of physical parameters contribute to their spectral signature, which makes unambiguous identification of their composition challenging. However, information pertaining to cloud composition is often discussed via retrieval and analysis of their associated pressure-temperature conditions and comparison of broad spectral characteristics to those of modelled spectra.

Detached layers composed of mesospheric dust aerosols were first observed in Mariner 9 limb measurements (Anderson and Leovy, 1978). Dust clouds up to 50 km have been identified in Viking limb images (Jaquin et al., 1986) and brightness maxima at up to 70 km altitude have been reported during southern summer (Ls ≥ 180°) (Jaquin, 1988). Maxima between 50 and 70 km were also observed in visible and infrared limb observations by NASA’s Thermal Emission Spectrometer (TES) during the 2001 dust storm (Cantor, 2007; Clancy et al., 2003), while Smith (2003) calculated...
Detections of cloud formation were made using Mars Orbital Camera (MOC) limb images acquired during Mars Years 24–26. Detections were corroborated by spatially and temporally coincident nadir spectra acquired by TES. Results showed a typical altitude range of 60–80 km but cloud composition could not be determined (Clancy et al., 2004).

However, the lack of detectable infrared radiant emittance at these altitudes led Clancy et al. (2007) to constrain particle sizes to less than 1 μm for water and less than 1.5 μm for CO₂ ice compositions. CO₂ ice clouds have been spectrally identified in data from ESA’s OMEGA imaging spectrometer (Montmessin et al., 2007; Scholten et al., 2010; Määttänen et al., 2010; Vincent et al., 2011) and NASA’s CRISM imaging spectrometer (Vincent et al., 2011).

However, some high-altitude clouds in which were previously classified as CO₂ ice in SPICAM observations (Montmessin et al., 2006) might be instead of water ice composition, as suggested by one OMEGA limb observation of an H₂O ice cloud observed at similar longitudes and season (Vincent et al., 2011). This is consistent with the fact that no instrument sensitive to CO₂ ice appears to have observed the peak in occurrences of mesospheric equatorial clouds at 145° ≤ L ≤ 160° identified by Clancy et al. (2007). Many authors have suggested a water ice composition for some mesospheric clouds below about 80 km (Clancy et al., 2004, 2007; Määttänen et al., 2010; McConnochie et al., 2005, 2010; Montmessin et al., 2006, 2007; Scholten et al., 2010).

So-called ‘blue wave’ clouds observed above 70 km altitude were imaged by the Pathfinder camera (Smith et al., 1997) and were suggested to be composed of CO₂ ice, rather than water ice aerosols (Clancy and Sandor, 1998), since temperatures derived from a density profile inferred from the spacecraft’s deceleration during descent were below the CO₂ condensation temperature between approximately 79–85 km (Schofield et al., 1997). Aerosol layers and proximal super-cold (below CO₂ condensation temperature) pockets detected between 80 and 100 km using stellar occultation techniques and data from the SPICAM ultraviolet spectrometer aboard Mars Express, led Montmessin et al. (2006) to hypothesise that they could be CO₂ ice clouds.

Early retrievals of martian dayside mesospheric temperatures were performed using data returned by the Mariner 6 and 7 (Herr and Pimentel, 1970) and Viking missions (Sefton and Kirk, 1977) as well as from observations using CO₂ laser emission (Deming et al., 1983; Johnson et al., 1976) and stellar occultation techniques (Montmessin et al., 2006). However, the wide range of retrieved mesospheric temperatures has encouraged debate as to whether atmospheric conditions frequently become cool enough to form CO₂ ice clouds or whether water ice or dust is a more likely candidate. Using modelled spectra to distinguish between water ice and CO₂ ice is often challenging due to the large number of unknowns regarding aerosols such as particle shape, heterogeneous cloud structure, line of sight effects, scattering by low altitude clouds with heterogeneous structure, and scattering of radiance from the unconstrained lower atmosphere.

Potential causes of mesospheric clouds have been reported as convection (Montmessin et al., 2007) thermal tides (Clancy and Sandor, 1998; Clancy et al., 2007; Forbes and Miyahara, 2006; González-Galindo et al., 2011; Lee et al., 2009; Määttänen et al., 2010) and ‘cold pockets’ (Clancy and Sandor, 1998) formed by conditions favouring the propagation of gravity waves into the mesosphere (Spiga et al., 2012).

Conditions associated with cloud formation have been compared to output from the Laboratoire de Météorologie Dynamique (du CNRS) global circulation model (LMD-GCM) (Forget et al., 1999, 2008) by González-Galindo et al. (2011) and to output from the LMD Mesoscale GCM (Spiga and Forget, 2009) by Spiga et al. (2012). In general mesospheric temperature retrievals are occasionally below the condensation point of CO₂, but models do not usually predict sub-CO₂ frost point temperatures at mesospheric altitudes (work by Colaprete et al. (2008) is an exception to this trend). This disagreement may be explained by interaction of cold atmospheric regions created by global circulation and the propagation to the mesosphere of small-scale dynamics such as gravity waves and thermal tides, which adiabatically reduce temperatures in rarefactions (González-Galindo et al., 2011; Määttänen et al., 2010; Spiga et al., 2012).

A full understanding of temporal and geographic distribution of clouds remains unconstrained due to limitations in both time and data coverage, since clouds are observed coincidentally in nadir or polar observations. However, based on previously available detections, two distinct mesospheric cloud populations are observed in latitudinal space: equatorial clouds observed during northern summer and mid-latitude clouds that tend to occur around the winter solstices in both hemispheres. There is a small number of observations of both types of clouds during local autumn (Clancy et al., 2004, 2007; Formisano et al., 2006; Inada et al., 2007; Määttänen et al., 2010; McConnochie et al., 2005, 2010; Montmessin et al., 2006, 2007; Scholten et al., 2010).

We present new detections of mesospheric clouds using data from NASA’s Mars Climate Sounder (MCS) aboard Mars Reconnaissance Orbiter (MRO). MRO’s Sun-synchronous polar orbit does not allow MCS to resolve daily cloud formation trends, but does provide near continuous atmospheric coverage. In addition, MCS limb-sounding observation strategy enables greater sensitivity to optically thin clouds.

In this paper, we describe an algorithm to detect mesospheric aerosol layers based on the fact that they form high radiance arch-shaped loops in gridded limb spectra (due to observation geometry). The algorithm’s detection and classification criteria are used to discern loops from background noise and non-loop features. We discuss the spatiotemporal distribution of positive detections made using more than two Mars years of gridded limb-spectra in two wavebands (MCS channels A4 and A6). Finally, we consider possible aerosol composition by analysis of the densest available temperature–pressure retrievals for each loop and comparison of loop spectra with a wide range of synthetic spectra calculated for dust, water ice and CO₂ ice aerosol layers.

2. Observations

Mars Climate Sounder is a filter radiometer that measures thermal radiance in 9 spectral bands, with 21 pixels in each band (McCluney et al., 2007). Spectra are acquired in nadir sounding, polar bucket scanning and along track limb-staring observation modes. Limb sounding, with pixel arrays oriented perpendicular to Mars’ limb, is the primary observation mode and it has returned a large dataset of atmospheric observations between 0 and 80 km altitude, acquired nearly continuously since Mars Reconnaissance Orbiter entered orbit in late 2006.

MCS has two symmetric telescopes, with separate focal planes A&B. Spectral channels cover the visible to far infrared (0.3–45 μm). Focal plane A has 6 bands. A1–5 cover the mid-IR and have band passes between 0.55 and 5 μm wide, while band A6 spans a wide interval from the visible to mid-infrared (0.3–3 μm). Focal plane B has 3 bands in the far infrared (with band centres at 31.7, 41.7 and 42.1 μm, respectively), located primarily to retrieve temperatures and water vapour below 40 km. However, due to the increased width of band B3 in the flight instrument it has so far not been possible to retrieve H₂O profiles.

In this study we use data returned from band A4 (11.5–12.2 μm), designed for measuring dust and condensate extinction
Fig. 1. The altitude of the tangent point of the line of sight \((z')\) to the cloud gives projected apparent altitude of the cloud at each orbital position. The orbital path of the spacecraft causes the apparent altitude to increase then decrease as the cloud is viewed from below \((0,1,2)\), edge on \((3)\) and from above \((4,5)\). This causes a discrete cloud to appear as a continuous loop in the radiance profile, which is acquired along-track. The apex of a loop gives the true altitude of a discrete cloud.

Fig. 2. Example of gridded limb radiance profiles from a 4 h sequence of MCS observations (Product ID: 080123040000). Each column of pixels in the top two panels is derived from an average of five adjacent individual limb measurements (referred to as a block). Each product contains several hundred blocks, typically acquired over approximately two orbits, that are gridded onto a linear distance scale representing the along-track nadir path. (A) Band A4, with a central wavelength of 11.8 \(\mu m\), shows thermal signatures of loop features on the day and night-side. (B) Band A6, with a central wavelength of 1.65 \(\mu m\) and a wide band-pass of 0.303–3.03 \(\mu m\), is more sensitive to loop features, but only in dayside spectra. (C) Latitude and longitude of tangent point against along-track distance for the two orbits. Gray shading indicates the solar elevation relative to the surface at the tangent point, i.e. grey areas represent the night side.
in the altitude range 0–80 km (McCleese et al., 2007), and band A6, which covers a broad range in the visible to short-wave infrared (0.3–3 μm). Band A6 relies on reflected solar band radiance so features we detect in band A6 data are almost entirely limited to the dayside. We also analyse radiances from bands B1 and B2 to illustrate broad spectral trends over season.

MRO’s orbit lasts 112 min 12 s and has an inclination of 92.6°, which ensures full latitudinal coverage and results in a dayside equator crossing local time of 15:00. Orbital altitude varies between a 255 km periapsis (over the south pole) and a 320 km apoapsis (over the north pole). MCS limb and nadir observations are normally acquired in the same observation–calibration sequence, which lasts ~34 s. In this time 2 nadir observations are followed by 8 limb observations, although an actuator anomaly in January 2007 resulted in a modified observation strategy, comprising limb-stare interspersed with off-nadir surface views. Finally, to correct for the effects of thermal drifts, two calibration observations are made, one of deep space and one of a black body calibration target mounted on the instrument yoke. In one sequence, the average horizontal along-track spacing of limb observations (comprising a complete atmospheric profile, or 21 spectra) is 110 km, but regularly spaced gaps in data coverage occur between sequences due to acquisition of calibration and nadir spectra. Twenty-one pixels in each spectra represent radiance at 21 altitudes, typically covering ~10–100 km altitude. The vertical spacing of pixels is 5 km, which is approximately equal to half the atmospheric scale-height (McCleese et al., 2007).

3. Cloud detection

A characteristic of the limb observation geometry is such that measured radiance contains contributions from the instrument’s entire line of sight, which is tangential to the surface and passes through a range of altitudes in the atmosphere. As a result, in successive spectra obtained as the spacecraft orbits, discrete radiance features such as aerosol layers/clouds show different apparent altitudes in the instruments’ focal plane. Their altitude projected onto the instruments will at first lie near the surface, as the feature appears on the horizon (Fig. 1 – position 0). Successive spectra will show its apparent altitude rise (positions 1 and 2) to reach an apex when the line of sight is tangential to the surface (position 3), which is equal to the feature’s true altitude. Finally the feature’s projected altitude will fall again as the spacecraft passes over it (positions 4 and 5). The resulting ‘loop’-shaped structure is distinct and can be used as a signature for detection of discrete clouds, most notably at mesospheric altitudes where there are few other major radiance features.

4. Preprocessing

We started with calibrated and geometrically registered level 1B data from the standard pipeline (Henderson et al., 2007; McCleese et al., 2007). First, averaging was applied to spectra to increase the signal to noise ratio. Limb spectra were taken in groups of eight, however the first three spectra after a black body calibration could be affected by high temperature transients (Kleinbohl et al., 2009a). We therefore averaged the last five points in each sequence of eight and rejected the first three. Second, the altitude, latitude and longitude of the tangent point of each pixel was determined using ray-tracing (Teanby, 2009). Altitudes of geometrically registered spectra were relative to the surface as represented by four pixel per degree gridded data from the Mars Orbiter Laser Altimeter (MOLA) (Zuber et al., 1992) aboard NASA’s Mars Global Surveyor. We converted altitudes relative to the surface into those relative to the aeroid, since a gravitational equipotential surface most closely follows atmospheric pressure contours. This was performed by subtracting the value of the MOLA surface and adding the value of the aeroid at the geographic coordinates of each spectra. Aeroid and surface grids were both stored at a resolution of 4 ppd and were co-registered. Bilinear interpolation using the nearest 4 grid points was performed in order to return values at specific geographic coordinates. Spectra were then resampled onto regular horizontal surface distance and altitude grids with 100 km horizontal and 0.5 km vertical spatial resolution (Fig. 2), which provide the starting point for feature detection.

The average along-track spacing for a block of 5 limb-spectra is 110 km (McCleese et al., 2007), but can vary between data products due to calibration measurements and off-nadir ground measurements. Artifacts, produced by gridding of sparsely spaced or variably-spaced spectra were found to cause false classifications of features, i.e. the algorithm reporting the presence of a loop where there was none. We found spacings of 400 km or less sufficient to resolve loops and avoid this problem. 2810 data files that

![Fig. 3.](image_url)
contained spectra spaced more widely than this threshold were not used. We also rejected files that contained radiance values for bands A4 or A6 that were zero for sections or the length of the file, indicating calibration problems. Overall, 3898 data files acquired between December 2006 (MY 28) and April 2011 (MY 30) were used in this study, the spatial and temporal coverage of which is shown in Fig. 3.

4.1. Detection of loop features

Gridded data below 50 km altitude were discounted, since discrete layer features become swamped by lower atmosphere emission. Distance–altitude radiance grids (e.g. Fig. 2) were binarized into object matrices by thresholding using a radiance of 5×10^{-8} for band A4 and 1×10^{-4} nW cm$^{-2}$ sr$^{-1}$ cm$^{-1}$ for band A6, which was chosen after testing of 25 random files that showed loop features (e.g. Fig. 4). Post binarization, the detection of loop features was performed using automated object analysis (Fig. 5). Binary images were converted to object matrices, where pixels representing a feature contained the integer identifier of that feature, while the background contained 0.

Features were classified as loops if they satisfied several numeric criteria, which were determined by running the algorithm on a representative subset of the data and manually classifying detected features as loops or not. We found that features that represented all or parts of loops had cross-sectional areas between 750

Fig. 4. Plots of A6 radiance in two MCS data products, one showing a loop feature and one not. (A) Product 071105000000 shows no loop features in the altitude range 65–75 km (enclosed with a dashed-dotted line). (B) Product 080113000000 shows a loop feature with an apex at approximately 70 km altitude. (C) Distribution of radiances in the 65–75 km altitude range in each plot. Radiances in product 080113000000 have high values relative to those in 071105000000 at high percentiles (97–100%). This illustrates that in the presence of loops a large fraction of the total radiance in this altitude interval lies in high radiance values.
and 22,500 km², major axes orientations within 10° of the vertical and had aspect ratios >2. These numerical criteria were therefore used as a basis for classification. Using these parameters, we found the algorithm achieved a 90% classification success rate compared to human classification on a test set of 100 randomly selected data products. The remaining 10% of features that were incorrectly classified were often upper portions of larger lower atmosphere features that had been isolated during thresholding and, coincidentally, had satisfied geometric criteria.

Complete loop structures were not required in object matrices to return a positive detection, since a loop’s ascending and descending limbs can sometimes appear disconnected from its apex, making the total size of the feature appear small relative to the area of the vertical and horizontal limbs. Misclassification of these features as loops was rare, since they typically failed the aspect ratio and orientation tests.

While testing indicated that 90% of detected features appeared to be detached aerosol layers, we found that our algorithm did not detect all such layers, since some are quite subtle. Preliminary work by Kass et al. (2011) suggests that improvements to this technique may be possible by including all of MCS’s available channels for detection. However, our approach was sufficient to detect major layers and thus illustrate broad geographic and seasonal trends.

5. Results

Fig. 6 shows the location of detected loop features in bands A4 and A6. We attribute these features to discrete high-altitude (>50 km) aerosol layers or clouds. To remove observation bias we count the number of detections in bins of 5° latitude and 5° solar longitude, then divide by the number of observation blocks acquired in each bin (Fig. 7).

5.1. A6

Since band A6 has a bandpass in the visible to shortwave infrared (0.3–3 μm), features detected are visible only during daylight hours. Panel A of Fig. 6 therefore shows only dayside clouds. In Northern hemisphere summer, clouds are detected predominantly at equatorial latitudes, with higher frequency during Ls ranges 0–40° and 100–130°, on both sides of the northern hemisphere summer solstice (Fig. 6). This distribution is not seen during the dust storm/perihelion season, when we observe a paucity of clouds at equatorial latitudes. Instead, most positive detections tend to occur in two mid-latitude bands (~30–60°), with more detections in the Southern Hemisphere, particularly in the periods Ls = 150–190°, at the start of northern hemisphere fall, and 240–270°, prior to northern hemisphere winter solstice. The two regimes are separated by a sharp boundary at Ls = 150°, which loosely marks the beginning of dust storm season. We plot the geographic distribution in non-dust storm and dust storm conditions in Fig. 8 to highlight the disparity.

The distribution of clouds detected over latitude and season does not appear to differ greatly between each Mars year, when accounting for observational bias (Fig. 8, panel A). Analysis of cloud distribution in separate aphelion and perihelion seasons reveals little latitudinal variation within each season’s regime. Aphelion season (northern hemisphere summer) cloud detections are generally concentrated between ~50° and 50°N with very few clouds detected southwards of ~60°N, at south polar latitudes (Fig. 8, panel B). Perihelion season (northern winter) cloud detections are concentrated along two mid-latitude bands, but with few detections...
around the equator, high detection frequency around the south polar region and almost no cloud detections northwards of 60° latitude (Fig. 8, panel C).

5.2. A4

We also ran the detection algorithm on data from mid infrared band A4 (11.49–12.20 μm). Increases in radiance in this band can be due to thermal emissions of condensates (McCleese et al., 2007) and therefore detections are not restricted to the dayside, but are possible at all local times. We plot the day and night-side distribution of clouds detected in band A4 (Fig. 6, panels B and C). For both day and night plots we see a generally similar spatio-temporal distribution of clouds to that detected in band A6. The main difference between day and night distributions as detected in band A4 is an increased number of clouds in the mid-latitude bands in the period $L_s = 150–240°$, during northern hemisphere fall.

Thermal signatures, from band A4, are more likely to produce false positive detections of loops than visible signatures from band A6, because high altitude temperature anomalies, particularly during the aphelion season ($L_s < 150°$), may appear in band A4, but not in band A6. Since we regard detections in band A6 as more reliable due to its much cleaner signal, we focus on the distribution of clouds over latitude, longitude, L_s and altitude in band A6 data in Figs. 8 and 9.

5.3. Altitude

We define cloud altitude as the uppermost pixel of a detected feature that satisfied the radiance threshold. Field of view leakage between successive spectra in a vertical profile can cause the edges of loop features in gridded spectra to appear more diffuse and as a result, the upper edges of clouds could be slightly higher than their reported altitude. However, the vertical extent of the object resulting from thresholding at the apex of a loop tends to be ~5 km and was not seen to exceed 10 km, consistent with previous estimates of cloud thickness (Montmessin et al., 2007; McConnochie et al., 2010). Since the vertical spacing of spectra in each block is 5 km, vertical structure finer than this cannot be resolved, hence reported altitudes are accurate to approximately ±2.5 km.

Altitudes of previously detected mesospheric clouds lie in the range 45–110 km (Clancy et al., 2004; Määttänen et al., 2010; McConnochie et al., 2010; Montmessin et al., 2006, 2007). On average we find the highest number of loop features in the range 55–65 km both in band A6 and in A4 (Fig. 9). However, a population of high altitude (80–90 km) features is detected in band A6, which is temporally concentrated almost exclusively between
L_s = 250–270°, in northern mid-winter. We find this high-altitude population to be distributed mostly in a narrow latitude band centred around 45°S, with a few features located further towards the South Pole.

6. Discussion

6.1. Atmospheric temperature

Fig. 10 shows the MCS-derived temperature at 60 km and 80 km above the aeroid for Mars years 29 and 30 (as available in PDS level 2 DDRs derived by Kleinbohl et al. (2009b)) averaged for all observations within latitude-L_s bins of 5° i.e. over all longitudes and all local times. Some inter-annual variation is evident between the two Mars years, but seasonal trends are similar. We note similarities between the temperature distribution over L_s and latitude for detected clouds (Fig. 6) and the temperature trends observed by MCS. Specifically, cold equatorial and mid-latitude temperatures are observed for L_s < 150°, when we detect equatorial aerosol layers.

The coldest temperatures at 80 km occur prior to L_s = 150°, in northern summer, at approximately 60°S, with a few features located further towards the South Pole.

During L_s 240–280° a large number of features are detected over a wide range of altitudes, but unlike the rest of the martian year, particularly at altitudes >70 km (Fig. 9). During this period generally higher temperatures are observed by MCS, most noticeably at 60 km (Fig. 10). This correlation may be the result of warm southern hemisphere temperatures during perihelion season, which would be expected to cause increased upwelling. This interpretation is consistent with calculations of the convective available potential energy (CAPE) (Holton, 2004) from MCS P-T retrievals by Heavens et al. (2010), who associate high values of CAPE between L_s = 180–300° with convective instabilities. This could transport dust and water vapour to high-altitude, causing adiabatic cooling and subsequent condensation. In this case, increased dust loading
could provide an abundance of effective ice nucleation sites (Gondet et al., 2012; Määttänen et al., 2010; McConnochie et al., 2010).

6.2. Temperature deviation from CO$_2$ frost point

In order to provide discrimination between likely aerosol candidates we compare our observed mesospheric aerosol layer distribution to the nearest available atmospheric temperature and pressure retrievals. CO$_2$ ice is unlikely to be present if local atmospheric pressure and temperature does not result in CO$_2$ saturation. For each feature we therefore extract the atmospheric pressure and temperature from the PDS (level 2 DDRs) temperature profiles, which were retrieved using the method of Kleinbohl et al. (2009b). Deviation of P–T conditions from CO$_2$ saturation vapour pressure was calculated by using a polynomial fit to the experimental saturation vapour pressure data in Lide (1995)

$$p(T) = \exp(A + B/T + CT),$$

where $A = 25.24826$, $B = -3882.969$ K, and $C = -0.02722391$ K$^{-1}$, where $p(T)$ is the saturation vapour pressure in pascals. We retrieved the pressure for each feature and calculated the difference between the observed temperature and that required for CO$_2$ saturation.

Fig. 8. Geographic and temporal distribution of loops as detected in band A6 data. (A) The occurrence of loops over latitude and time. Lower box shows observation bias: number of blocks acquired in each 5° of L_s over calendar time. (B) Occurrence of loops over latitude and longitude for northern summer ($0 \leq L_s < 150°$) is predominantly equatorial and distributed between −60° and 60° N. (C) Occurrence of loops over latitude and longitude for Northern winter ($150° \leq L_s < 360°$) is distributed along two mid-latitude bands, with slightly more detections in the southern hemisphere.
Often, conditions at the exact time and altitude of a feature were not available due to the difficulty of temperature retrieval where significant aerosols are present, since these features are a strong departure from the assumed spherical symmetry that is necessary in the current retrieval scheme. Therefore, our strategy was to extract pressure and temperature retrievals that were closest in time and altitude to each feature. We discounted features that were separated from the nearest available P–T retrieval by either >300 km \((\sim 5^\circ)\) ground level along-track distance or >1 km in altitude because, in those cases, conditions at the point of temperature retrieval are less likely to be representative of those in the vicinity of the feature. This separation is comparable to the vertical and horizontal scales of gravity wave perturbations, which are reported as \(\lesssim 10\) and 200 km, respectively (Fritts et al., 2006; Magalhães et al., 1999; Spiga et al., 2012), so it is likely that temperature within the cloud differs somewhat from our retrieval-based estimate. The application of both lateral and vertical separation filters reduced the total number of features with proximal retrievals from 2729 to 1702 \((\sim 38\%)\) for features detected in band A6 and from 4068 to 3041 \((\sim 25\%)\) for features in band A4.

Data points in Fig. 11 represent features for which close T(p) profiles are available and are coloured according to their deviation from the CO₂ frost point. Errors on retrieved temperatures in PDS derived data records are typically a few kelvin and rarely exceed \(\sim 6\) K. Given that observed temperatures for some particularly cold features are only a few kelvin from the calculated CO₂ frost point (Fig. 11) and the likelihood of local scale variations, it is possible that their actual temperatures could lie above or below the frost point. Therefore, this comparison is necessarily somewhat qualitative as it relies on the temperature in the region of the cloud features, but not the clouds themselves. We suggest a limit of 20 K or less above the CO₂ frost point as a reasonable indicator of possible CO₂ ice formation.

In general, features detected prior to \(L_s = 150^\circ\) are colder, particularly at equatorial latitudes, where their deviation from the frost point is rarely \(\sim 20\) K. However, no temperature retrievals that satisfied our separation criteria were below the CO₂ frost point. Retrievals for features detected during dust storm season generally show temperatures between 30 and 80 K higher than the CO₂ frost point, suggesting that the formation of CO₂...
ice at mesospheric altitudes is far less likely during perihelion season.

In addition to the clear seasonal dichotomy, we also observe a population of features that form at south polar latitudes between $L_s/210^{\circ}$ to $230^{\circ}/176^{\circ}$ (Fig. 11). Retrieved temperatures for these features are generally >40 K above the CO$_2$ frost point, implying a non-CO$_2$ ice composition. Their location is coincident with high mesospheric temperatures in Fig. 10, which may be a result of polar warming where downwelling causes compression and adiabatic heating. Energetic convection initiated by equatorial lifting during perihelion season could be responsible for transport of dust to southern polar latitudes, which may provide nucleation sites for water ice aerosols. A similar process at the opposite season could be responsible for a smaller population of relatively warm features at north polar latitudes between $L_s/90^{\circ}$ to 150° (most visible in Fig. 11, panel A).

6.3. Spectral indications

The spectral channels on MCS are sufficient to provide some level of spectral discrimination between aerosols composed of CO$_2$ ice, H$_2$O ice, or dust. Accurately modelling spectra is challenging due to the large number of unconstrained parameters including particle shape, heterogeneous cloud structure, line of sight effects, scattering by low altitude clouds with heterogeneous structure and scattering from of the radiance from the unconstrained lower atmosphere.

In line with this view we adopt a conservative approach to our spectral analysis, using a single band ratio (B1/B2) to illustrate the seasonal changes in feature type. While both channels B1 and B2 are sensitive to dust and condensate extinction in the altitude range 0–80 km (McLeeese et al., 2007), B2’s response shape and centre make it more sensitive to ice than to dust. Therefore lower values of B1/B2 are more likely to indicate the presence of ice, rather than dust aerosols.

In order to compare broad trends in this ratio to modelled spectral characteristics, we created a large set of synthetic spectra covering plausible aerosol properties and atmospheric conditions based on the literature, which are summarised in Table 1. This combination of variables resulted in the generation of 19980 synthetic spectra for each aerosol type. The use of this comprehensive parameter space should give a realistic simulation of the spectral characteristics of the different aerosols.

Spectra were generated using the NEMESIS radiative transfer code (Irwin et al., 2008), which uses the correlated-k technique (Lacis and Oinas, 1991) and a spherically symmetric atmospheric geometry. The atmosphere was modelled up to 110° km altitude and divided into 99 pressure levels, resulting in a grid spacing of ≈ 1 km. To increase computational efficiency, MCS filter response profiles were incorporated directly into the k-tables. Spectroscopic data for atmospheric gases were as described in Kleinbohl et al. (2009b). Our base atmospheric model was the COSPAR reference atmosphere, with a temperature–pressure profile from Seiff (1982) and composition from Owen (1982). In order to account for seasonally varying temperatures, the temperature at and above the aerosol layer was set to a uniform value between 90 and 200 K (in 1 K steps), which covers the full temperature range of Mars’ atmosphere at these levels over a martian year. Aerosol absorption cross sections were calculated using Mie theory, with an effective variance of 20%. Refractive indices of aerosols were taken from Wolff et al. (2006) (dust), Warren (1984) (H$_2$O ice), and Hansen (1997) (CO$_2$ ice). Aerosol layers were contained within a single
pressure level (1–2 km thickness), and spectra were generated with a tangent altitude equal to the bottom of the aerosol layer. Scattering through both the cloud itself and upper atmosphere was modelled. Mixed aerosol compositions were not considered. Therefore, our channel ratios act as a guide to composition and are not by themselves definitive. This is a reasonable approach given the limited spectral information content of a channel radiometer. This simple radiative transfer analysis captures sufficient gross spectral features to make robust, yet conservative, conclusions.

We calculate the ratio B_1/B_2 for features classified as loops in band A6 and for synthetic spectra. We illustrate the distribution of the ratio in detected loop features compared to that for synthetic dust, H$_2$O and CO$_2$ spectra by computing histograms for each distribution (Fig. 12A). Synthetic spectra for dust almost never have $B_1/B_2 < 0.6$, while those for H$_2$O ice almost never show $B_1/B_2 > 0.6$. This implies that for observed features where $B_1/B_2 < 0.6$ clouds show spectral signatures most similar to synthetic spectra of CO$_2$ and H$_2$O ice. Conversely, those where $B_1/B_2 > 0.6$ appear most similar to synthetic spectra of dust and, to a lesser extent, CO$_2$ ice (Fig. 12A). It should be noted that the B_1/B_2
position of the histogram maxima of detected loop features and synthetic spectra of water ice are approximately equal and lie at \(B1/B2 \approx 0.35 \), indicating that the largest fraction of features that we detect appear similar to water ice.

We illustrate seasonal trends in \(B1/B2 \) by fitting a tensioned spline (Teanby, 2007) to the mean values of \(B1/B2 \) in 10° bins of \(L_s \) (Fig. 12B). While the data contains considerable scatter, there is a broad seasonal trend, which indicates that \(B1/B2 \) is generally higher in features that form at equatorial latitudes, while during dust-storm/perihelion season aerosol layers tend to form more frequently, along mid-latitude belts at altitudes <80 km (with some exceptions, see Fig. 9) and are far more numerous than those detected at night (band A4, Fig. 6) appear more scattered between latitudes 60°N and 60°S than those detected during daylight hours, which tend to occur less frequently and preferentially in the S. hemisphere (Fig. 6). Features detected during dust storm season at \(L_s > 150° \) generally occur in two mid-latitude belts, at altitudes <80 km (with some exceptions, see Fig. 9) and are far more numerous than those detected during aphelion season. Those detected at night (band A4, Fig. 6) appear more scattered between latitudes 60°N and 60°S than those detected during daylight hours, which tend to occur less

7. Conclusions

Using more than two Mars years of limb spectra, we detect aerosol layers in the martian mesosphere and determine their spatio-temporal distribution. We suggest composition of these layers based on nearby temperature retrievals and the diagnostic spectral ratio \(B1/B2 \). The distribution of detected features compares well to previous detections of clouds in Mars’ mesosphere (Clancy et al., 2007; Määttänen et al., 2010; Montmessin et al., 2006, 2007; McConnochie et al., 2010; Scholten et al., 2010) and fills in many gaps in temporal and spatial coverage from previous instruments, which were designed predominantly for nadir observation. During N. hemisphere summer (\(L_s < 150° \)) cloud formation in the mesosphere appears relatively rare, but concentrated almost entirely at equatorial latitudes, while during dust-storm/perihelion season aerosol layers tend to form more frequently, along mid-latitude bands and preferentially in the S. hemisphere (Fig. 6). Features detected during dust storm season at \(L_s > 150° \) generally occur in two mid-latitude belts, at altitudes <80 km (with some exceptions, see Fig. 9) and are far more numerous than those detected during aphelion season. Those detected at night (band A4, Fig. 6) appear more scattered between latitudes 60°N and 60°S than those detected during daylight hours, which tend to occur less
at the equator, though this may be due to high atmospheric opacity caused by lofted dust.

Non-dust storm equatorial features (Fig. 8B) form two longitudinal clusters between 240–300°E and 320–30°E. This is consistent with LMD-MGCM results that show daytime minimum values of T_{diff} (temperature deviation from the CO$_2$ frost point) between 70 and 80 km at these longitude locations, reported by González-Galindo et al. (2011) as due to the effects of topography interacting with solar forcing to create non-migrating tides. Temperature minima were also found to agree well with the location and season of clouds detected by HRSC, OMEGA, TES and THEMIS-VIS (González-Galindo et al., 2011). In addition, a cluster of mid-latitude (40–60°S) features between 40–120° longitude (Fig. 8B) is seasonally coincident with the coldest temperatures observed by MCS at 80 km (Fig. 10, upper panels).

Cloud production during both seasons appears higher during several well-defined time periods during the martian year. Higher formation frequencies of equatorial aerosol layers occur during several well-defined time periods during the martian year. Higher coincident with the coldest temperatures observed by MCS at CO$_2$ frost point observed for those features (Fig. 11). However, a mechanisms for dust nuclei. However, for sub-CO$_2$ frost point con-
dition to form a mechanism for further cooling is probably re-
quired. As has been suggested (González-Galindo et al., 2011; Määttänen et al., 2010; Spiga et al., 2012), this could be the inter-
action between cold conditions imposed by global circulation and the propagation to the mesosphere of small-scale dynamics such as gravity waves and thermal tides to further reduce temperatures adiabatically in local rarefactions.

While our detection technique has enabled spatiotemporal mapping and preliminary spectral identification of high radiance mesospheric aerosol layers there remains scope for improvement to our detection method and spectral analysis. Specifically, we envisage that any future work should take advantage of all of MCS’s available channels and account for the effects of scattering from the lower atmosphere in order to better constrain the composition and microphysical properties of aerosol particles. How-
ever, at the present time more in depth interpretation is limited by the lack of temperature profiles with the clouds themselves.

Acknowledgments

This work was funded by the UK Science and Technologies Facilities Council (STFC) and the Leverhulme Trust. Thanks are due to David Kass for insightful feedback on an early draft of the manuscript, and to two anonymous reviewers whose comments helped to improve the paper.

References

Galindo et al. (2011) as due to the effects of topography interacting with solar forcing to create non-migrating tides. Temperature minima were also found to agree well with the location and season of clouds detected by HRSC, OMEGA, TES and THEMIS-VIS (González-Galindo et al., 2011). In addition, a cluster of mid-latitude (40–60°S) features between 40–120° longitude (Fig. 8B) is seasonally coincident with the coldest temperatures observed by MCS at 80 km (Fig. 10, upper panels).

Cloud production during both seasons appears higher during several well-defined time periods during the martian year. Higher formation frequencies of equatorial aerosol layers occur during northern hemisphere spring ($L_s < 0–60°$), particularly in detections using band A6 dayside and band A4 nightside data.

We have compared the statistical distribution of a simple spectral parameterization (B1/B2) in observed feature spectra with that of synthetic spectra of dust, H$_2$O ice and CO$_2$ ice aerosols (Fig. 12). We find that values of B1/B2 > 0.6 likely indicate the presence of dust or CO$_2$ ice, while those <0.6 are typical for water or CO$_2$ ice. We find a large number of features appear similar to synthetic spectra of water–ice, particularly during perihelion/dust storm season (Fig. 12), consistent with temperatures 30–80 K above the CO$_2$ frost point observed for those features (Fig. 11). However, a significant number of features during this time show values of B1/B2 >1, indicating a spectral similarity to dust. During northern summer ($L_s > 150°$) clouds are predominantly equatorial and appear spectrally similar to H$_2$O or CO$_2$ ice, but a significant fraction have proximal temperature retrievals that are within a few degrees of the CO$_2$ frost point, indicating a CO$_2$ composition is possible for these features.

Longitudinal and temporal clustering could be related to the broad effects of global circulation, which may act as transport mechanisms for dust nuclei. However, for sub-CO$_2$ frost point conditions to form a mechanism for further cooling is probably required. As has been suggested (González-Galindo et al., 2011; Määttänen et al., 2010; Spiga et al., 2012), this could be the interaction between cold conditions imposed by global circulation and the propagation to the mesosphere of small-scale dynamics such as gravity waves and thermal tides to further reduce temperatures adiabatically in local rarefactions.

While our detection technique has enabled spatiotemporal mapping and preliminary spectral identification of high radiance mesospheric aerosol layers there remains scope for improvement to our detection method and spectral analysis. Specifically, we envisage that any future work should take advantage of all of MCS’s available channels and account for the effects of scattering from the lower atmosphere in order to better constrain the composition and microphysical properties of aerosol particles. However, at the present time more in depth interpretation is limited by the lack of temperature profiles with the clouds themselves.

Acknowledgments

This work was funded by the UK Science and Technologies Facilities Council (STFC) and the Leverhulme Trust. Thanks are due to David Kass for insightful feedback on an early draft of the manuscript, and to two anonymous reviewers whose comments helped to improve the paper.